

製品を使用する前にこのマニュアルをよく読んでください

AUBO Robotics

AUBO-i5 & CB-M

Original Version 4.5.11

本マニュアルは AUBOPE V 4.5 に適用され、詳細は本マニュアルバージョン情報章節を参照して、使用前に実際の製品バージョン情報をよくチェックして、一致を確保してください。

ユーザーズマニュアルは定期的にチェックと修正を行い、更新されたコンテン ツは新しいバージョンに表示されます。このマニュアルの内容や情報は予告な く変更される場合がある。

製品をインストール、使用する前に、このマニュアルをお読みください。

いつでも読んだり参考にしたりできるように、このマニュアルを保管してくだ さい。

このマニュアルのすべての画像は参考にしてください。受け取った実物を基準 にしてください。

このマニュアルは遨博(北京)智能科技有限公司の専有財産であり、遨博(北京)智能科技有限公司の書面許可を得ず、コピー、全部または一部コピー、またはその他の形式に変換して使用してはならない。

Copyright © 2015-2022 AUBO はすべての権利を保持します。

目録

目錄	₹		i
はじめに			
製品構成viii			
詳紙	田情報		viii
1	セキュリ	リティ	9
	1.1	概要	9
	1.2	セキュリティ警告フラグ	9
	1.3	安全上の考慮事項	10
	1.3.	.1 概要	10
	1.3.	.2 使用上の注意事項	10
	1.3.	.3 人員セキュリティ	13
	1.4	責任と規範	14
	1.5	危険識別	15
	1.6	予定された用途	16
	1.7	緊急事態処理	17
	1.7.	.1 非常停止装置	17
	1.7.	.2 非常事態からの復帰	
	1.7.	.3 ジョイントの緊急移動の強制	
	1.7.	.4 ロボット本体の過大な安全保護	
	1.7.	.5 衝突防護	19
2	運搬及(び注意事項	21
3	保守修理	理及び廃棄処分	23
	3.1	メンテナンス	23
	3.2	廃棄処分	24
4	品質保詞	诓	25
	4.1	製品品質保証	25
	4.2	免責事項	25
5	ロボッ	トシステムハードウェア構成	
6	ロボッ	トの取り付け	
	6.1	簡単なインストール手順	30
	6.2	重要なセキュリティの説明	
	6.3	ロボットワークスペース	31
	6.3.	.1 ロボットの機械寸法	31
	6.3.	.2 ロボット運動範囲	
	6.4	ロボットを取り付ける	
	6.4.	.1 ベース	
	6.4.	.2 ロボット本体の取り付け	
	6.5	エンドツールの取り付け	
	6.5.	.1 エンドフランジ機械構造寸法	
	6.6	ケーブル接続	
	0.0		

エラー![ホーム] タブを使用して、ここに表示する文字列に 标题 を適用してください。

V4.5.11

7	Ιシ	リーズ制御キ	ヤビネット	43
	7.1	概要		43
	7.2	重要なも	マキュリティの説明	44
	7.3	コントロ	コールボックスパネルの紹介	45
		7.3.1	コントロールボックス前面パネル	45
		7.3.2	コントロールボックス側パネル	46
		7.3.3	コントロールボックス上面板	46
	7.4	動作モー	-ド選択	49
		7.4.1	手動モード	49
		7.4.2	連動モード	49
	7.5	ティーラ	←ング有効化スイッチ	55
8	電気	ミインタフェー	-ス	57
	8.1	概要		57
	8.2	電気的な	♀警告と注意事項	57
	8.3	コントロ	コールボックス通信インタフェース	58
	8.4	コントロ	コールボックス I/O 給電	59
		8.4.1	内部電源供給	59
		8.4.2	外部電源供給	60
	8.5	コントロ	コールボックス安全 I/O	60
		8.5.1	概要	60
		8.5.2	セキュリティのヒント	61
		8.5.3	セキュリティ I/O 機能定義	61
		8.5.4	デフォルトのセキュリティ構成	63
		8.5.5	外部非常停止入力	63
		8.5.6	ガードストップ入力	64
		8.5.7	縮小モード入力	66
		8.5.8	ガードリセット入力	67
		8.5.9	トライステートスイッチ入力	68
		8.5.10	動作モード入力	69
		8.5.11	ティーチング有効化入力をドラッグ	70
		8.5.12	システム停止入力	70
		8.5.13	システム非常停止出力(常開)	72
		8.5.14	ロボット運動出力	73
		8.5.15	ロボットが出力を停止していない	74
		8.5.16	縮小モード出力	75
		8.5.17	非削減モード出力	76
		8.5.18	システムエラー出力	77
		8.5.19	外部非常停止出力(常閉)	78
		8.5.20	上位機運転指示出力	79
	8.6	コントロ	コールボックス内部 I/O	80
	8.7	コントロ	コールボックス汎用 I/O	81
		8.7.1	汎用デジタル I/O インタフェース	81
		8.7.2	アナログ I/O インタフェース	86
		8.7.3	アラーム信号インタフェースのクリア	89

	8.8 リモ	ートスイッチ制御 I/O インタフェース	
	8.8.1	リモート電源オン	
	8.8.2	リモートシャットダウン	
	8.9 連動	制御 I/O インタフェース	
	8.10 ロボ	ット本体工具 I/O コネクタ	
9	クイックスタ	→ k	
	9.1 ロボ	ットの基礎機能の紹介	
	9.2 ロボ	ットシステムのインストール	
	9.3 ロボ	ットシステムの電源投入	
	9.3.1	電源投入前準備	
	9.3.2	システムオン	
	9.4 ロボ	ットシステムのシャットダウン	
	9.5 クイ	ックスタートシステム	
10	ティーチ	ペンダント	
	10.1 概要	· · · · ·	
	10.2 ティ	ーチペンダント操作インタフェース	
	10.2.1	ユーザーログイン	
	10.2.2	初期インタフェース	
	10.2.3	ロボット移動制御	
	10.3 ロボ	ット I/O 設定と状態表示	
	10.3.1	コントローラ I/O	
	10.3.2	ユーザ I/O	
	10.3.3	ツール端 I/O	
	10.4 ロボ	ットシステムのインストール設定	
	10.4.1	初期ビット姿勢標定	
	10.4.2	ツールの定格	
	10.4.3	座標系標定	
	10.5 アー	ムの安全構成	
	10.5.1	基本構成	
	10.5.2	縮小モード	
	10.5.3	ジョイント制限	
	10.6 ロボ	ットシステム設定	
	10.6.1	言語設定	
	10.6.2	日付時刻設定	
	10.6.3	ネットワーク設定	
	10.6.4	パスワード設定	
	10.6.5	その他の設定	140
	10.6.6	更新する	141
	10.7 拡張	モジュール	144
	10.7.1	Modbus プラグイン	
	10.8 シス	テム情報	147
	10.9 その	他	
	10.9.1	バージョン情報	

エラー![ホーム] タブを使用して、ここに表示する文字列に 标题 を適用してください。

V4.5.11

11	オンライン	·プログラミング	150
	11.1 概要		150
	11.2 機能モ	ジュールの説明	152
	11.2.1	テキストボックスエディタ	152
	11.3 エンジ	ジニアリング管理	153
	11.3.1	新規プロジェクト	153
	11.3.2	プロジェクトの保存	154
	11.3.3	デフォルトのプロジェクト	155
	11.3.4	ロードエンジニアリング	156
	11.3.5	プロジェクトの実行	157
	11.3.6	プロジェクトルートノード	158
	11.4 サブエ	ニンジニアリング	159
	11.4.1	新規プロシージャファイル	160
	11.4.2	サブプロジェクトコマンドを呼び出す (Procedure)	161
	11.4.3	命令群コマンドを呼び出す(Command Group)	162
	11.5 移動日	1マンド (move)	164
	11.5.1	移動タイプ	165
	11.5.2	路点コマンド (Waypoint)	172
	11.5.3	到着前	174
	11.6 基本条	そ件コマンド	186
	11.6.1	ループコマンド (Loop)	186
	11.6.2	ループ・コマンドのスキップ(Break)	
	11.6.3	単一ループ終了コマンド (Continue)	
	11.6.4	If $\exists \forall \forall k$ (ifelse)	
	11.6.5	条件選択コマンド (SwitchCaseDefault)	
	11.6.6	設定コマンド (Set)	191
	11.6.7	待機コマンド (Wait)	
	11.6.8	ラインコメントコマンド (Line Comment)	
	11.6.9	ブロック注釈コマンド (Block Comment)	
	11.6.10	タスク転送コマンド (Goto)	194
	11.6.11	「ポップアップ」コマンド(Message)	195
	11.6.12	空のコマンド (Empty)	197
	11.7 詳細条	チーマンド	197
	11.7.1	マルチスレッド制御コマンド (Thread)	
	11.7.2	スクリプトコマンド (Script)	
	11.7.3	オフラインコマンド (Offline Record)	
	11.8 トラッ	ククレコード	202
	11.8.1	トラック記録コマンドを呼び出す(Record Track)	
	11.9 変数の)構成	
	11.10 タイマ	····· 7	
	11.10.1	タイマの挿入 (Timer)	
	11.10.2	タイマー状態表示	207
	11.11 シミコ	レーションモデル	209

1	1.12	プロジェクトログ	
1	1.13	スクリプトファイル	
付録.			I
月	月語		I
言	忍証		II
僖	亭止時間	『と停止距離	IV
麦	豪照規格	۶ 	V
技	支術仕様	ŧ	VI
有	有効負荷	j	VIII
7	マーム取	2.9.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	IX
フ	マラーム	△情報と一般的な問題の説明	X

はじめに

当社が開発した軽量6自由度連携ロボット AUBO-i5 をご購入、ご利用いただきあり がとうございます。

AUBO-i 5 本体外形構造概略図

AUBO シリーズのロボットは関節モジュール化設計を採用し、開発者レベルのロボ ットシステムを使用している。ユーザーは AUBO プラットフォームが提供するアプ リケーションインタフェースに基づいて、自分に属するロボット制御システムを開発 することができる、また、AUBO ロボットには専用のプログラム可能な操作インタフ ェースがあり、ユーザーはこのインタフェースを通じてロボットの運転状態をリアル タイムに観察し、ロボットに対して多くの制御設定を行い、オフラインでオフライン シミュレーションを行うこともでき、実用的な作業効率を大幅に向上させた。

AUBO-i 5 は遨博(北京)智能科技有限公司が発売した第2世代知能軽量6自由度モジュール化協力ロボットで、有効負荷は5 kg で、AUBOシリーズモジュール化協力ロボットの一つである。

製品構成

完全な AUBO-i5 ロボットシステムの製品構成を下表に示します。

テーブル 1 製品構成

の名前をあげる	数量
AUBO-i5ロボット本体	1
ティーチペンダント	1
コントロールボックス	1
コントロールボックスケーブル	1
アームケーブル	1
電源ケーブル	1
ベース (オプション)	1

詳細情報

詳細については、Web サイトにアクセスしてください。<u>www.aubo-robotics.cn</u>

1 セキュリティ

1.1 概要

この章では、ロボットやロボットシステムを操作する際に守るべき安全の原則 と規範について説明します。インテグレータおよびユーザーは、このマニュアル を真剣に読む必要があり、警告表示のある内容は重点的に把握し、厳格に遵守す る必要がある。ロボットシステムは複雑で危険性が高いため、使用者は操作のリ スク性を十分に認識し、本マニュアルの規範と要求を厳格に遵守し、実行する必 要がある。ユーザおよびインテグレータは、十分な安全意識を備え、産業用ロボ ット安全規格 ISO 10218 に準拠する必要がある。

1.2 セキュリティ警告フラグ

このマニュアルの安全に関する内容は、次の警告マークを使用して説明します。 マニュアルの警告マークに関する説明は、重要な内容を示しているので、必ず守 ってください。

テーブル2警告表示の説明

エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。エラー! [ホ ーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

V4.5.11

1.3安全上の考慮事項

1.3.1 概要

このマニュアルには、使用者の保護と機器の損傷を予防するための安全対策が 含まれています。ユーザーは説明書のすべての関連記述を読む必要があり、安全 事項を完全に熟知している必要がある。このマニュアルでは、できるだけさまざ まな状況について説明していますが、多くの可能性があるため、できない場合や できない場合はすべて記録されています。

1.3.2 使用上の注意事項

ロボットやロボットシステムを初めて起動する際には、次の基本情報を理解し て従う必要がある。その他の安全関連情報はマニュアルの他の部分で紹介してい ます。しかし、すべてがそろっているわけではありません。実際の応用には、具 体的な問題の具体的な分析が必要です。

- 1. ロボットおよびすべての電気機器は、必ず本明細書の要件と 仕様に従って取り付けてください。
- 2. 初めてロボットを使用する前に、ロボットとその防護システ ムの初歩的なテストと検査を行う必要がある。

V4.5.11 エラー! [ホーム] タブを使用して、ここに表示する 文字列に 标题 2 を適用してください。エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

 システムとデバイスを最初に起動する前に、デバイスとシス テムが完全であるかどうか、操作が安全であるかどうか、破 損が検出されているかどうかを確認する必要がある。今回の 検査では、国や地域の有効な安全生産規則に合致しているか どうかを観察する必要があり、すべての安全機能をテストし なければならない。
 ユーザーはすべてのセキュリティパラメータとユーザープロ グラムが正しく、すべてのセキュリティ機能が正常に機能し ていることを確認して確認する必要がある。各セキュリティ 機能をチェックするには、ロボットを操作する資格のある人 が必要です。ロボットを起動するには、包括的で注意深いセ キュリティテストに合格し、セキュリティレベルに達してか らでなければなりません。
5. ロボットを設置基準に従って設置し、調整する専門家が必要 です。
 ロボットのインストールと構築が完了したら、完全なリスク 評価を再度行い、ファイル記録を保持する必要がある。
7.許可されていない人がセキュリティパラメータを変更したり 設定したりするのを防ぐために、パスワードや隔離措置を使 用して、許可されていない人がセキュリティパラメータを変 更したり変更したりします。安全係数が変更されると、関連 する安全機能が分析される必要がある。
8. ロボットは、不測の事態が発生したり、動作が正常でなかっ たりした場合には、急停止スイッチを押してロボットの動作 を停止することができる。
9. AUBO i シリーズロボット関節モジュールにはブレーキが取り付けられており、電源を切るときはロボットの姿勢を維持し、人為的に頻繁に電源システムを切らないようにしてください。スイッチごとの時間間隔は10 sより大きいことをお勧めします。
10. AUBO i シリーズロボットは衝突検出機能を備えており、ロ ボットの電気外力がユーザーが安全に設定した正常な受力範 囲を超えた場合、ロボットやオペレータが衝突してけがをし ないようにロボットが自動的に停止する。この機能は、AUBO i シリーズのロボット、特に人間と機械が連携して動作する 安全性のために設定されていますが、ロボットシステムは正 常な動作範囲内でなければならず、AUBO シリーズの制御キ ャビネットを使用する必要がある。使用者が独自にコントロ

エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。エラー! [ホ ーム」タブを使用して、ここに表示する文字列に 标题 2 を適用してください。 VA 5 11

	V4.5.1
	ーラを開発すると、ロボットにはこれらの機能はありませ ん。これによる危険な結果は使田老白身が負担する
	ん。これによる地陸な加木は反用有日才が負担する。
<u>家</u> 高温危险!	 ロボット本体と制御キャビネットは動作中に熱を発生します。ロボットが動作しているときや停止したばかりのときは、ロボットを操作したり触ったりしないでください。 電源を切って1時間待つと、ロボットが冷却されます。 コントロールボックスの発熱箇所に指を伸ばしてはいけませ
	$h \circ$
	1. ロボットの腕と工具が正しく安全に取り付けられていること を確認します。
警告!	2. ロボットの腕に十分なスペースがあることを確認してくださ い。
	3.ロボットが破損している場合は使用しないでください。
	4. 安全装置を正常な I/0 インタフェースに接続しないで、安全 なインタフェースしか使用できません。
	5. 適切な取り付け設定(例えばロボット本体の取り付け角度、 TCP 中の重量、TCP オフセット、安全配置)が行われている ことを確認します。インストールファイルを保存してプログ ラムにロードします。
	 工具及び障害物には尖った角やねじれがあってはならない。 すべての人の頭と顔がロボットが触れる範囲外にあることを 確認します。
	7.ティーチングマシンを使用する際のロボットの動きに注意し てください。
	8.任意の衝突は、高速および高ペイロードの場合よりもはるか に高い運動エネルギーを放出します。
	9. 異なる機械を接続すると、危険を強めたり、新たな危険を引き起こしたりする可能性がある。常にインストール全体の包括的なリスク評価を行います。異なるセキュリティレベルと非常停止レベルが必要な場合は、常に最高のパフォーマンスレベルを選択します。インストールで使用されているすべてのデバイスのマニュアルを常に読んで理解してください。
	10.ロボットを変更しないでください。ロボットの変更は、イ ンテグレータが予測できない危険性がある。ロボットライセ

/4.5.11	エラー![ホーム] タブを使用して、ここに表示する
文字列に	标题 2 を適用してください。エラー! [ホーム] タブを使用して、ここに表示する文字列に
	标题 2 を適用してください。
	ンス再構築には、最新版のすべての関連サービスマニュアル
	に従う必要がある。ロボットが何らかの方法で変更されたり
	変更されたりした場合、遨博(北京)智能科技有限公司はす
	べての責任を負うことを拒否します。
	11. ロボットを輸送する前に、ユーザーは絶縁状態や保護措置
	をチェックする必要がある。
	12. ロボットを運搬する時は輸送要求を守り、ぶつからないよ
	うに慎重に運搬する
	 1. ロボットがロボットを破損させる可能性のある機械に接続されているか、一緒に動作している場合は、ロボットのすべての機能とロボットプログラムを個別にチェックすることを強くお勧めします。ロボットプログラムを検出するには、他の機械作業スペース以外の一時的な経路点を使用することを推奨します。
	 2. 遨博(北京)智能科技有限公司は、プログラムミスやロボットの不適切な操作によるロボットの損傷や人的被害に対して 責任を負わない。
	 ロボットを永久磁場にさらさないでください。強磁場はロボ ットを破壊する。

1.3.3 人員セキュリティ

V4.5.11

ロボットシステムを運転する際には、まず作業者の安全を確保する必要がある。 以下に一般的な注意事項を示し、作業者の安全を確保するための適切な対策を講 じてください。

エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。エラー! [ホ ーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

V4.5.11

可能性がある。このような状態でもロボットは動作中とみな すべきである。
 ロボットの動作範囲を示すために、床に線を引いて、ロボットが把持ツール(ロボットハンド、ツールなど)を含む動作範囲を理解するようにしてください。
5. ロボットの操作領域の近くに安全対策(例えば、ガードレー ル、ロープ、またはスクリーンを保護する)を確立し、操作 者と周辺の人々を保護することを確保する。作業を担当する 作業者以外がロボット電源に触れないように、必要に応じて ロックを設置する必要がある。
 操作パネルやティーチングを使用する場合、手袋をはめると 操作上のミスが発生する可能性があるため、必ず手袋を外し た後に作業を行うようにしてください。
7. 人がロボットに挟まれたり、中に囲まれたりするなどの緊 急・異常な場合は、ロボットの腕を押したり引っ張ったりす
ることで関節を強制的に移動させます(少なくとも700 N)。電力駆動なしでロボットアームを手動で動かすのは緊急 時に限られ、関節を壊す可能性がある。

1.4責任と規範

AUBOiシリーズロボットは、他のデバイスと完全なマシンを構成することがで き、それ自体が完全ではありません。したがって、このマニュアルの情報には、 完全なロボットを設計、設置、操作する方法や、この完全なシステムの周辺機器 の安全に影響を与える可能性は含まれていません。完全なロボット設置の安全性 は、ロボットがどのように統合されているかによって異なります。インテグレー タは、その完全なシステムの設計とインストールについて、所在国の法律法規と 安全規範と基準に従ってリスク評価を行う必要がある。リスク評価は統合ビジネ スにとって最も重要な課題の1 つであり、インテグレータは以下の基準を参照 してリスク評価プロセスを実行できる。リスク評価は統合ビジネスにとって最も 重要な課題の1 つであり、インテグレータは以下の基準を参照してリスク評価 プロセスを実行できる。

- ▶ ISO 12100: 2010 機械安全-設計通則-リスク評価とリスク低減。
- ➢ ISO 10218-2: 2011 ロボットとロボット機器-安全要件-第2部: 産業用ロボ ットシステムと統合。
- RIA TR R 15.306-2014 産業用ロボットとロボットシステムの技術報告-安全 要件、タスク型リスク評価方法。

▶ ANSI B 11.0-2010 機械安全、一般的な要件とリスク評価。

AUBO ロボットのインテグレータは、以下の責任を果たす必要があるが、これらに限定されない:

- 完全なロボットシステムに対して全面的なリスク評価を行う、
- ▶ システム全体の設計インストールが正確であることを確認する、
- ユーザーとスタッフにトレーニングを提供する、
- 完全なシステムの操作仕様を作成し、プロセスの説明を明確に使用する。
- 適切な安全対策を確立する、
- 最終設置時に適切な方法を使用して危険を除去するか、すべての危険を許 容できるレベルまで最大限に低減する。
- 残りのリスクをエンドユーザーに伝える、
- ロボットにインテグレータのロゴと連絡先情報を表示する、
- ▶ 関連する技術文書をアーカイブします。

適用される標準および法的ガイドラインを参照するには、Web サイト: www.aubo-robotics.cn にアクセスしてください。

このマニュアルに含まれているすべての安全上の情報は、すべての安全上の指示を遵守しても、オペレータによる人的被害や設備の損傷が発生する可能性があるとしても、 邀博(北京)智能科技有限公司の保証とはみなされない。

遨博(北京)智能科技有限公司は製品の信頼性と性能を絶えず向上させることに 力を入れているため、予告なく製品をアップグレードする権利を保留している。 逮博(北京)智能科技有限公司は本マニュアルの内容の正確性と信頼性を確保す るよう努めているが、その中のいかなる誤りや漏れた情報にも責任を負わない。

1.5 危険識別

リスク評価では、通常の使用中にオペレータとロボット間の潜在的な接触と予 見可能な誤操作を考慮する必要がある。操作者の首、顔、頭は触れないように露 出してはならない。周辺安全防護装置を使用せずにロボットを使用するには、関 連する危険が許容できないリスクを構成するかどうかを判断するために、まずリ スク評価を行う必要がある。例えば、

- 鋭いエンドエフェクタまたはツールコネクタの使用には危険がある可能性 がある。
- ▶ 毒性又はその他の有害物質の処理に危険がある可能性がある、
- オペレータの指がロボットの台座や関節に挟まれる危険性があり、
- ▶ ロボットに衝突して発生する危険、

エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。エラー! [ホ ーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

V4.5.11

▶ ロボットや末端に接続された工具が固定されていない危険性、

ロボットのペイロードと頑丈な表面との間の衝撃による危険性。

インテグレータは、リスク評価を通じてそのようなリスクとその関連するリス クレベルを測定し、リスクを許容可能なレベルに下げるための対応する措置を決 定し、実施しなければならない。特定のロボットデバイスには他にも重大な危険 がある可能性があることに注意してください。

AUBO ロボットに適用される固有の安全設計措置と、インテグレータとエンド ユーザが実施する安全規範またはリスク評価を組み合わせることにより、 AUBO-i シリーズのロボット連携性操作に関連するリスクを可能な限り合理的 で実行可能なレベルに低減する。このドキュメントを使用して、ロボットがイン ストール前に存在する残りのリスクをインテグレータとエンドユーザに伝える ことができる。インテグレータのリスク評価が、特定のアプリケーションにおい てユーザーに許容できないリスクを構成する可能性がある危険を測定する場合、 インテグレータはリスクを許容できるレベルに低下させるまで、これらの危険を 除去または最大限に低減するために適切なリスク低減措置を講じる必要がある。 適切なリスク低減策(必要に応じて)を講じる前に使用するのは安全ではありま せん。

ロボットを非等方的にインストールする場合(例えば、危険なツールを使用する 場合)、リスクアセスメントは、アセンブリがプログラムを実行する際に追加の 安全なデバイス(例えば、安全な起動デバイス)を接続して人員とデバイスの安 全を確保する必要があると推測することができる。

1.6予定された用途

AUBO ロボットは、一般的な産業用機器として使用されるものに限定されます。 例えば、工具、機器を操作したり固定したり、部品、製品を加工したり渡したり するために使用されます。AUBO ロボットは、指定された環境条件でのみ使用で きる。操作環境および操作条件の詳細については、付録のセクションを参照して ください。

AUBO ロボットは、周辺安全防護装置を設置せずに使用するが、リスク評価を経 て危険がない場合、つまり安全防護装置や現場誘導装置を使用しない限り、協力 的な操作を行うことができる特殊な安全等級特性を持っている。従業員と AUBO ロボットまたはエンドエフェクタまたは部品との予期または予期しない接触は 許容できないリスクを構成せず、作業エリア内の他の物体(工具、設備、表面な ど)との予期または予期しない接触も許容できないリスクを構成しない。

ロボットコントローラ及びロボットは、一般的な産業機器に限られ、所定の用途 とは異なる用途には使用できない。禁止用途は、以下のものを含むが、これらに 限定されない:

- 燃えやすく爆発しやすいなどの危険な環境に使用される、
- 人や他の動物を移動または運搬するための装置、

- ▶ 人命に関わる医療機器等の装置、
- ▶ 社会性及び公共性に重大な影響を与えるための装置、
- ▶ 車載、船舶などが振動を受ける環境に用いる、
- ▶ クライミングツールの使用に使用します。

1.7 緊急事態処理

1.7.1 非常停止装置

非常停止ボタンを押すと、ロボットのすべての動きが停止します。非常停止はリ スク低減策としては使用できませんが、二次保護デバイスとして使用できる。非 常停止ボタンを複数接続する必要がある場合は、ロボット応用のリスク評価に組 み込まなければならない。非常停止ボタンは IEC 60947-5-5 の要件を満たしてい ます。

AUBO-iシリーズロボットは、ティーチに非常停止ボタンが設置されており、下 図のように、このボタンは危険な場合や緊急な場合に押す必要がある。コントロ ールボックスには外部非常停止ボタンポートが付いている(「8.5.5 外部非常停止 入力)、インテグレータまたはユーザは実際の状況に応じて使用することができ る。

図 1-1 非常停止ボタン

末端に接続されたツールまたはデバイスが潜在的な脅威を構成 する場合は、システムの急停止回路に統合されなければならず、 本警告事項を遵守していないと、死亡、重大な人身傷害、または 重大な財産損失を招く可能性がある。

V4.5.11

1.7.2 非常事態からの復帰

すべてのキー形式の非常停止装置には「施錠」機能がある。この「ロック」は、 デバイスの非常停止状態を終了するために開かれなければなりません。

非常停止ボタンを回転するとロックが開きます。

非常停止状態からのリカバリは、ロボットシステムの危険が完 全に排除されていることを確認してから操作できる簡単で非常 に重要なステップです。

1.7.3 ジョイントの緊急移動の強制

ごくまれに、ロボット電源が故障したり、電源を使用したくない緊急時に1つ以 上のロボット関節を移動させる必要がある場合がある。これにより、ロボット関 節を移動させるには次の方法がある。

強制リバース駆動: ロボットアームを押したり引っ張ったりして、関節を強制的に移動させます。

ロボットアームを強制的に手動で移動させることは緊急時に限 られ、関節を損傷する可能性がある。

1.7.4 ロボット本体の過大な安全保護

ロボット本体には過大な安全保護機能が備わっている。ロボット本体が電気的 に静止している状態で、オペレータや他の物体がロボット本体に誤接触し、衝突 力が安全閾値を超えた場合、ロボットは本来、衝突力の方向に沿って受動的に移 動する。この機能により、オペレータや他のオブジェクトがロボット本体に衝突 した場合に、人、他のオブジェクト、ロボット本体へのダメージを減らすことが できる。

この機能により、衝突ダメージを軽減し、他の用途としてリス ク評価を行う必要がある。

1.7.5 衝突防護

ロボット本体は衝突防護機能を備えている。ロボット本体の運転中、オペレータ や他の物体がロボット本体に誤って接触し、衝突力が安全閾値を超えた場合、ロ ボット本体は 2 種類の停止状態に入り、同時にドラッグティーチングモードに 入る。この場合、ロボット本体をドラッグして比較的安全な位置に到達した後、 ティーチング器を操作することで、ロボット本体を運転し続けることができる。 この機能により、オペレータや他のオブジェクトがロボット本体に衝突した場合 に、人、他のオブジェクト、ロボット本体へのダメージを軽減するとともに、プ ログラムを再起動する時間を節約し、作業効率を向上させることができる。衝突 力の安全なしきい値。衝突レベルを設定して変更することができる。詳細は、「」 を参照してください。10.5.1 基本構成。

V4.5.11

2 運搬及び注意事項

ロボットの揚重時、運動部品は適切な措置を取って位置決めし、揚重と輸送中に意外な運動が発生し、危害を与えないようにしなければならない。包装輸送時には、包装基準に従って包装し、包装箱の外に必要なマークを付けるべきである。

輸送時には、ロボットが安定しており、適切な位置に固定されていることを保証する必要 がある。

コントロールボックスはハンドルを使用して持ち上げなければならない。

ロボットの梱包材からロボットを取り付け位置に移動すると、ロボットを支えてロボット シャーシのすべてのボルトが締め付けられます。

固定したらロボットに電源を入れ、ロボットドラッグティーチング機能を使ってロボット の姿勢を適切な位置に調整します。

輸送が完了したら、元の包装を維持してください。包装材料を乾燥した場所に保存し、将 来的にロボットを再包装して移動する必要があるようにします。

V4.5.11

3 保守修理及び廃棄処分

3.1 メンテナンス

メンテナンス作業は、本マニュアルのすべての安全指示を厳守してください。

メンテナンス、キャリブレーション、メンテナンス作業は最新のサービスマニュ アルに基づいて行わなければならず、サービスマニュアルはサポートサイト www.aubo-robotics.cn で見つけることができる。すべての遨博(北京)智能科技 有限公司の販売店は本サイトにアクセスすることができる。

修理は、認可されたシステムインテグレータまたは宇宙(北京)知能科学技術有限公司が行う必要がある。部品が達博(北京)知能科学技術有限公司に返品される場合は、サービスマニュアルの規定に従って操作しなければならない。

メンテナンス作業に規定された安全レベルを確保し、有効な国または地域の作 業安全条例を遵守し、同時にすべての安全機能が正常に動作するかどうかをテス トしなければならない。

メンテナンス作業の目的は、システムが正常に動作するか、システム障害時に正 常な状態に復帰するのを支援することです。修理には、トラブルシューティング と実際の修理が含まれます。

ロボットの腕やコントロールボックスを操作するときは、次の安全手順と警告 事項に従う必要がある。

エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。エラー! [ホ ーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

V4.5.11

3.2 **廃棄処分**

AUBO ロボットは、適用される国家法規制及び国家基準に基づいて処理しなければならない。

品質保証 4

4.1 製品品質保証

AUBO ロボットには12ヶ月の限定保証期間がある。

新設備とその部品が使用開始後12ヶ月以内(輸送時間を含めると最長15ヶ月 以内)に、製造または材料不良による欠陥が発生した場合、遨博(北京)智能科 技有限公司は必要な予備部品を交換または修理する必要がある。

宇宙博(北京)知能科学技術有限公司に交換または返却された設備またはコンポ ーネントの所有権は、宇宙博(北京)知能科学技術有限公司が所有している。

製品が保証期間内にない場合は、邀博(北京)智能科技有限公司は顧客に交換ま たは修理費用を請求する権利を保持している。

保証期間外では、デバイスに欠陥がある場合、
遨博(北京)智能科技有限公司は、 生産損失や他の生産デバイスへの損傷など、これによる損害や損失を一切負担し ません。

4.2 免責事項

デバイスの欠陥が適切に処理されていないか、ユーザーマニュアルに記載され ている関連情報に従っていないことに起因している場合は、「製品品質保証」は 無効になります。

次の場合に発生する障害は、本保証の対象外です。

- 1. 工業基準を満たしていない、またはユーザーマニュアルの要求通りに設置、 配線、その他の制御設備を接続していない、
- 2. 使用時にユーザーマニュアルに示された仕様または基準を超えている場合、
- 3. 本製品を指定以外の用途に使用する場合、
- 4. 保管方式、作業環境はユーザーマニュアルの指定範囲(汚染、塩害、結露な ど)を超えている、
- 5. 不適切な輸送による製品の損傷、
- 事故や衝突による損傷、
- 7. 非原装正規品部品、付属品を取り付ける、
- 8. 遨博(北京)智能科技有限公司またはその指定インテグレータ以外の第三者 による原装部品の改造、調整、修理による損傷、
- 9. 火災、地震、津波、落雷、強風、洪水などの自然災害、

V4.5.11

10. 上記以外の非遨博(北京)智能科技有限公司の責任による故障、

次の場合は保証の対象外です。

- 1. 生産日または保証開始日を識別できません。
- 2. ソフトウェアまたは内部データの変更。
- 3. 再現できない故障や故障は、達博(北京)智能科技有限公司が識別できない。

製品品質保証協議によると、邀博(北京)智能科技有限公司はディーラーに販売 された製品と部品に発生した欠陥と欠陥に対してのみ品質保証を約束している。

販売性や特定の用途に対する黙示的な保証を含むが、これらに限定されないその他の明示的または暗示的な保証や責任、国際博覧会(北京)知能科学技術有限 公司は関連する保証責任を負わない。また、邀博(北京)智能科技有限公司は関 連製品による間接的な損害や結果について責任を負わない。

5 ロボットシステムハードウェア構成

図 5-1 AUBO-i 5 ロボットシステム

のように図示したように、AUBO-i5ロボットシステムは主にロボット本体、制御キャビ ネット(オプションの多機種制御キャビネット)、台座とティーチペンダントから構成さ れている。ロボット本体は人間の腕を模しており、6つの回転関節があり、各関節は自由 度を表している。のように図図示するように、ロボット関節はベース(関節1)、肩(関節 2)、肘(関節3)、腕1(関節4)、腕2(関節5)、腕3(関節6)を含む。ベースはロボッ ト本体とベースの接続に使用され、ツール端はロボットとツールの接続に使用されます。 肩と肘の間、肘と腕の間にはアームチューブで接続されています。ティーチング操作イン タフェースまたはティーチングをドラッグすることで、ユーザーは各関節の回転を制御 し、ロボットエンドツールを異なる姿勢に移動させることができる。

図 5-2 ロボット関節の概略図

コントロールボックスは AUBO-i シリーズロボットの制御本体であり、コントロールボックスは複数の IO インタフェースを提供し、CAN バスを通じてロボット本体と通信する。

ロボットツール端には 4 つのデジタル入出力インタフェースと 2 つのアナログ入力イン タフェースがある。

ティーチペンダントは、ユーザーに視覚化された操作インタフェースを提供します。ユー ザーはティーチングマシンを通じてロボットをテスト、プログラミング、シミュレーショ ンすることができ、わずかなプログラミングベースでロボットを操作することができる。

V4.5.11

6 ロボットの取り付け

6.1 簡単なインストール手順

AUBO-iシリーズロボットのインストールの簡単な手順:

- 1. ロボットのワークスペースを特定する、
- 2. 台座にロボット本体を取り付ける、
- 3. エンドツールの取り付け

6.2重要なセキュリティの説明

^	インストール環境条件:
	✓ 非腐食性ガス又は液体
	✓ オイルミストフリー
注意!	✔ 無塩霧
	✓ 塵埃や金属粉末がない
	✓ 機械的衝撃、振動なし
	✔ 無電磁ノイズ
	✓ むほうしゃせいざいりょう
	✔ 低湿度
	✓ 引火性のないもの
	✓ 周囲温度: 0°C ~ 45°C
	✓ 直射日光を避ける(屋外での使用を避ける)
	床荷重能力:
	ロボットを強固な表面に取り付けます。この表面は、少なくと も 10 倍のスタンド関節の完全なねじれ力と、少なくとも 5 倍 のロボットアームの重量に耐えるのに十分でなければなりませ ん。また、この表面に振動があってはならない。具体的なベア ラ能力データは付録を参照してください。
	追加アプライアンスのインストール手順:
	ケーブルなどの追加コンポーネントが、遨博(北京)智能科技

V4.5.11 エラー! [ホーム] タブを使用して、ここに表示する 文字列に 标题 2 を適用してください。エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

> 有限公司が提供する範囲内の部分ではなく、産業用ロボットに 統合されている場合、ユーザーはこれらのコンポーネントが全 く影響を与えず、安全機能に影響を与えないことを保証する責 任がある。

- ロボットの設置が完了するたびに安全評価を行い、第1章
 (安全)の指示を厳守する必要がある。
- コントロールボックスは地面に水平に置くべきである。コントロールボックスの各側に 50 mmの隙間を残して、空気の流れがスムーズになるようにしなければならない
 - ティーチペンダントはコントロールボックスにぶら下げる ことができる。ケーブルを踏まないようにします。
- **永** 危险!
- 制御キャビネット、ティーチ、ケーブルが液体に接触して いないことを確認します。湿気の多いコントロールボック スは人員の死傷を招くことができる。
- コントロールボックスとティーチペンダントは、IP 43 レベ ルを超えたほこりや湿った環境にさらされてはならない。伝 導性ほこりが存在する環境に注意してください。

6.3 ロボットワークスペース

6.3.1 ロボットの機械寸法

図 6-1 に示すように、AUBO-i 5 ロボットの機械寸法図は、周囲の人や機器にぶ つからないようにロボットの運動範囲を考慮して設置する必要がある。 エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。エラー! [ホ ーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

V4.5.11

図 6-1AUBO-i 5 ロボット機械寸法図(単位: mm)
6.3.2 ロボット運動範囲

図 AUBO-i 5 の運動範囲を示し、シャーシの真上と真下の円筒空間を除く半径 886.5 mm の球体で動作する。ロボットの設置位置を選択する際には、ロボット の真上と真下の円筒空間を考慮して、工具を円筒空間に移動させないようにして ください。また、実際の応用において、関節 1/6 回転角度範囲は-360°~+360°、関 節 2/3/4/5 回転角度範囲は-175°~+175°、関節 4/5 回転角度範囲は-360°~+360°を選 択可能である。

図 6-2 ロボット作業空間の概略図

6.4 ロボットを取り付ける

6.4.1 ベース

AUBO-i5ベースを下図に示します。

ベースには 4 つのアンカーボルトと 4 つのジンバルホイールが付いており、固定と移動が容易です。ユーザがロボット本体を固定する必要がある場合、アンカーボルト上部を回転させ、アンカーボルトを降下する。ロボット本体を移動させる場合は、アンカーボルト下部ナットを工具(スパナ)で回転させ、アンカーボルトを上げてベース自在輪を着地させればよい。

図 6-3 ベース構造の概略図

ベース構造の機械的寸法を図 6-4 に示す。

図 6-4 ベース構造機械寸法図 (左:平面図右:正面図)

6.4.2 ロボット本体の取り付け

ロボットは 360°取り付け位置姿勢適応機能を備えており、図に示すように、ベースへの取り付け、揚重、壁取り付け、その他の特定の取り付け方法をサポートすることができる。

ベースに取り付ける場合は、M8ボルト4本を使用してロボット本体をベースに 固定し、2本使用することをお勧めしますΦ6 mm の穴を使用してピンを取り付 け、機械的寸法、例えば図を参照してください。

図 6-6 ベース上の取付穴の寸法、単位は mm

ロボット本体の通常の取り付け方法は、ベースに正装されています。ロボットが 取り付け方法を変更した(揚重、壁取り付けなどを選択する)場合、ティーチが 電源投入されると、初期化インタフェースの設定が完了すると、ティーチは次の ウィンドウをポップアップします:

		提示窗口	
时间	事件类型	事件信息	6
10:39:46.343	接口板	诊断信息:机械臂本体安装位置发生改 变	
			۲
		确认	

図 6-7 取付位置変更ポップアップ提示図

V4.5.11

その際、実際の状況に応じて画面下側のオプションをクリックしてください。そうしないと、ロボット本体がティーチングモードをドラッグしている間に予断を 許さない運動が発生する可能性がある。

6.5 エンドツールの取り付け

6.5.1 エンドフランジ機械構造寸法

ツールフランジには M 6 ねじ穴が 4 つ、ねじ穴が 1 つあるΦ6 mm 位置決め穴が あり、治具をロボットの端部に簡単に取り付けることができる。ツールフランジ の機械的寸法を図 6-8 に示します。

図 6-8 ロボット工具フランジ機械寸法図(単位 mm)

6.6ケーブル接続

コントロールボックスの底部には 3 つのソケットがあり、ロボット本体の底部 には1つのソケットがあり、ティーチペンダントの右下にはソケットがあり、使 用前に対応するケーブルをソケットに差し込む必要がある。

テーブル3ケーブル接続図

コントロールボックス底部 ソケットとケーブルの接続

ティーチケーブルとティー チ接続

ロボットケーブルとロボッ トの接続

テーブル 4 ケーブル接続方法

V4.5.11

対応番号	分類	説明	接続方法
1	ティーチングケー ブルとコントロー ルボックスの接続	ティーチングケーブル とコントロールボック スが接続されている一 端は、直管円形航空公 針プラグである。	コントロールボック スの接続口にあるダ ストキャップをコン セントから外し、直管 円形航空プラグをコ
2	ロボットケーブル とコントロールボ ックスの接続	ロボットケーブルとコ ントロールボックスが 接続されている一端 は、直管円形航空公針 プラグです。	ントロールボックス に差し込む。挿入方向 に注意し、挿入後はロ ックリングを締めま す。
3	外部電源ケーブル とコントロールボ ックスの接続	外部電源ケーブルとコ ントロールボックスが 接続されている一端 は、ピンプラグです。	電源コードのピンプ ラグをコントロール ボックスの電源コネ クタに接続します。
4	ティーチケーブル とティーチ接続	ティーチペンダントケ ーブルとティーチペン ダントが接続されてい る一端は、直管航空公 針プラグである。	まず、ティーチングイ ンタフェースのダス トキャップをティー チングから外し、直管 航空プラグをティー チングに差し込む。挿 入方向に注意し、挿入 後はロックリングを 締めます。
5	ロボットケーブル とロボット本体を 接続する	ロボット本体ケーブル とロボット本体が接続 されている一端は、直 管航空メスピンプラグ です。	ロボット本体のコネ クタに付いているダ ストキャップをコン セントから外します。 プラグとジャットの プラグとジャックを それで置合わせ し、判断の印はソケッ トの切り欠きとプラ グの突起が位置合わ せされているかどう かを示し、プラグをソ ケットに挿入します。 プラグの締め付けナ

4000©2015-2022 AUBO はすべての権利を保持します。

エラー![ホーム] タブを使用して、ここに表示する

V4.5.11 文字列に 标题 2 を適用してください。エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

		ットをカチッと音が
		するまで時計回り(プ
		ラグからソケット方
		向)に回転させ、接続
		が成功したことを示
		します。

ケーブル接続時の注意事項

V4.5.11

Iシリーズ制御キャビネット 7

7.1 概要

制御キャビネットは AUBO ロボットの制御センターであり、内部には制御マザ ーボード、安全インターフェースボード、スイッチング電源、安全防護要素など が含まれている。コントロールボックスは 100 V-240 V 交流から電力を供給し、 その内部のスイッチング電源は100 V-240 V 交流を12 V、24 V と48 V 直流に変 換し、コントロールボックス内の負荷とロボットに電力を供給する。使用する前 に、ロボットとティーチとコントロールボックスの間の配線がしっかりしている かどうかを確認する必要がある。

コントロールボックスにはハードウェア保護とソフトウェア保護があり、使用 時の安全を最大限に保証します。コントロールボックスの内部には複数の遮断器 が使用されており、ハードウェア上では信頼性の高い短絡保護と過負荷保護を果 たしており、コントロールボックス上でも急停止スイッチを外付けすることがで き、ユーザーは最短時間でロボット電源を遮断し、人員と設備の安全を保護する ことができる。

図 7-1 コントロールボックス外観概略図

V4.5.11

7.2重要なセキュリティの説明

7.3 コントロールボックスパネルの紹介

コントロールボックスの前面パネル及び上部パネルはスイッチ、ボタン、ランプ 及び電気インタフェースに関する。

7.3.1 コントロールボックス前面パネル

コントロールボックスの前面パネル構造を下図に示します。

図 7-2 コントロールボックス前面パネル概略図

テーブル5フロントパネルスイッチ	、ボタン及びランプ機能説明
------------------	---------------

の名前をあげる	機能
TEACH PENDANT ENABLE/DISABLE	ティーチング有効化スイッチボタン
MANIPULATOR ON	LED が点灯していることは、ロボットの電源が入ってい ることを示します。
POWER	LED が点灯すると、外部電源がオンになります。
STANDBY	LED が点灯しているのは、コントロールボックスインタ フェースボードのプログラム初期化が完了したことを 示し、ティーチング電源ボタンを押してロボットに電 源を入れることができる。
EMERGENCY STOP	LED が点灯していることは、ロボットが急停止状態にあ ることを示しています。
MODE MANUAL/LINKAGE	ロボット手動モードと連動モード選択。ボタンを押す と、ロボットは連動モードに入ります。
TEACH PENDANT	ティーチングケーブルコネクタ、ティーチングケーブ

V4.5.11

	ルを接続します。
DODOT	アームケーブルコネクタ、ロボット本体ケーブルを接
KUBUT	続します。
POWER IN	電源スイッチおよび電源ケーブルコネクタ。

7.3.2 コントロールボックス側パネル

コントロールボックスの両側部分にファンがある。

図 7-3 コントロールボックス側パネル

7.3.3 コントロールボックス上面板

コントロールボックスの上側には Ethernet インタフェース、USB インタフェー スがある。下図を参照してください。

テーブル 6 コントロールボックスの上面パネルインタフェースの説明

エラー! [ホーム] タブを使用して、ここに表示する 文字列に 标题 2 を適用してください。エラー! [ホーム] タブを使用して、ここに表示する文字列に

标题2を適用してください。

シー ケン ス番 号	インタフェース	機能
1	Ethernet インタフェ ース	リモートアクセスと制御に使用できる。
2	Modbus RTUインタフ ェース	Modbus デバイスに接続可能
3	USB インタフェース	ソフトウェアの更新、エクスポートプロジェク トファイルのインポートに使用できる。
4	コントロールボック ス外部電気インタフ ェース	外部 I/0 インタフェースを提供する

図 7-5 コントロールボックス外部電気インタフェース拡大模式図

V4.5.11

す。

アームの動作中に USB デバイスを抜き差しすることを禁止しま

7.4動作モード選択

ロボットシステムには手動と連動の2 種類の動作モードがあり、ボタンスイッ チで選択します。ロボットシステムの動作モードを変更する場合は、電源を切っ て指定した動作モードを選択し、ティーチペンダントおよびロボット本体を再起 動する必要がある。

7.4.1 手動モード

手動モードの場合、外部から連動モード IO でアームに入力された信号ではアー ムを制御できません。このモードは一般に、1台のアームだけの動作状態に適用 されます。

- 電源投入: コントロールボックスマスター命令スイッチを入れ、待機ランプ \triangleright が点灯するまで待ちます。ティーチング起動ボタンを約1s押して、ロボッ トをオンにします。
- 力制御ボタン: ロボットがティーチングモードになったら、ティーチング器 の力制御ボタンを中間ストップまで押し、ロボットを目標位置までドラッグ し、ボタンを放します。
- 急停止:ティーチングオン急停止ボタンを押すと、ロボットの電源が切れま す。ポップアップ急停止ボタンを回転させ、ティーチングインタフェースの 指示に従ってティーチングを操作し、アームを再電源する。
- ▶ シャットダウン:通常終了:ティーチング操作画面の右上隅にあるソフトウ ェアシャットダウンボタンを押してプログラムを終了する、強制シャットダ ウン:ティーチング器の左上隅のスタートボタンを長押しすると約3 s、青 ランプが消え、ティーチング器とロボットが電源を切る。

7.4.2 連動モード

連動モードの場合、アームは連動モード IO ポートを介して外部の1台または複 数の機器(アームなど)と通信することができる。このモードは一般的に、複数 のアーム間の共同運動に適しています。

インプット	インターフェースボード IO の機能と状態
L100	連動モードでは、プログラム起動信号入力インタフェース
LI01	連動モードでは、プログラム停止信号入力インタフェース
LI02	連動モードでは、プログラム一時停止信号入力インタフェース
LI03	連動モードでは、プログラムが初期位置入力インタフェースに
	戻る
LI04	リモート電源オン信号入力インタフェース(非連動モードでも
	リモート制御可能)

テーブル7ユーザ使用可能連動モード IO 機能と状態説明

V4.5.11

LI05	リモートシャットダウン信号入力インタフェース(非連動モー
	ドでもリモート制御可能)
F6	アラーム信号インタフェースのクリア(非連動モードでも遠隔
	制御可能〉
しゅつりょく	インターフェースボード IO の機能と状態
L000	連動モードでは、プログラム運転信号出力インタフェース
L001	連動モードでは、プログラム停止信号出力インタフェース
L002	連動モードでは、プログラム一時停止信号出力インタフェース
L003	連動モードでは、プログラムが初期位置信号出力インタフェー
	スに戻る

例

次の例は、連動モードにおいて、外部機器を用いてアームを制御する使用方法を示している。

ソフトウェアの準備:

1. ティーチにデフォルトのエンジニアリングを設定するには

AUBO								R 0/
		机械臂示教	E线编程 设置	置 扩展 系	统信息 关于			
工程	Linkage	~~>6			规	认工程		
新建	1 - O P 2 - O	roject_Program						
加載保存	3 ▼ 4 5	STO1MoveJ_J Stoop Stoop StoreC	Linkage	Offset	SECProgra	тоо	T01goto	T02variable
默认工程	6 7 8 9	− S Waypoint: − S Timer1 ✓ MoveA − S Waypoint:	T03messag e	T04line_blo ck	T05thread	T06offline	T07setcolli sion	T08joint1_
	10 11 12	▼ S MoveB	тоядоти	T11	T12	τ_	T_09script	T_608
	13 14 15 16	- ♥ Waypoint: -♥ Timer2 ▼ ♥ MoveA	Untitled Folder	main	Q package	rr rr	Ł1129	test
过程	17	Visypoint	工程夕称					
条件	18	Vaypoint:						
配置		100%	 自动加载器 	默认工程				
状态	$\bullet \bullet$	x 0 t t	🔵 自动加载	并运行默认工	程			
脚本	开始	停止 单步		刷新		取消	. T	角认
零位姿态	初始位姿	0.00	2020-02-25	5 14:57:42		速度		50%

設定中のアーム安全構成で、非停止状態で能力制御をオンにして保存します(連動モードで力制御機能を使用しない場合はこの操作は必要ありません)。

-		V4.5.11
Каиво	admin /	30
	机械臂示教 在线编程 设置 扩展 系统信息 关于	
IO状态	安全配置	
机械臂	基础条件 缩减模式 关节限制	
田安位次	安全配置	
	碰撞等级 9 ▼	
	运动限制初值 100%	
坐标系标定	✓ 非停止状态下使能力控	
安全配置	重置防护停止	
	 手动重置 自动重置 	
	操作模式	
	 常规模式 验证模式 	
系统	保存	
零位姿态 初始位姿 0	.00 2020-02-25 14:58:24 速度	50%

3. ティーチングソフトウェアをオフにする (アームの電源オフ)

ハードウェアの準備:

 コントロールボックス電気 IO インタフェースは外部制御装置に接続され、 下図のように、Y2、Y7は自己ロックスイッチ(押してスイッチを入れてス イッチを入れてから、下関を押す)、その他はリセットスイッチ(押してス イッチを入れてスイッチを入れて、手を放して閉じる)である

V4.5.11 エラー! [ホーム] タブを使用して、ここに表示する 文字列に 标题 2 を適用してください。エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

2. コントロールボックスパネルは連動ボタンを押す

3. アームの電源オン(外部 IO-Y 4/LI 04 により電源オン)

IO 機能の説明は以下の通りです

インプット	インターフェースボード IO の機能と状態
LI00(Y0)	連動モードでは、プログラム起動信号入力インタフェース
LI01(Y1)	連動モードでは、プログラム停止信号入力インタフェース
LI02(Y2)	連動モードでは、プログラム一時停止信号入力インタフェース
LI03(Y3)	プログラムリターン初期位置信号入力インタフェース(非連動モ
	ードでも遠隔制御可能)
LI04(Y4)	リモート電源オン信号入力インタフェース(非連動モードでもリ
	モート制御可能)
LI05(Y5)	リモートシャットダウン信号入力インタフェース(非連動モード
	でもリモート制御可能)
F6 (Y6)	アラーム信号インタフェースのクリア
SI06(Y7)	ティーチングインタフェースをドラッグ
しゅつりょく	インターフェースボード IO の機能と状態
L000	連動モードでは、プログラム運転信号出力インタフェース

V4.5.11

L001	連動モードでは、プログラム停止信号出力インタフェース
L002	連動モードでは、プログラム一時停止信号出力インタフェース
L003	連動モードでは、プログラムが初期位置信号出力インタフェース
	に戻る
S007	上位機運転指示出力信号

4. 具体的な操作は次のとおりです。

機能	操作	げんしょう
		コントロールボックスの
		電源投入後、
		LO 01 は有効信号を出力
		し、
電源を入れる	Y 4 (LI 04) を押す	上位機が起動すると、SO
		07 は有効信号を出力し、
		少なくとも 10 s 以上遅
		延して後続操作を行う必
		要がある
マーノた初期位置に致	アームが初期位置に移動す	アームが初期位置まで移
) ムを初期位直に移 動	るまで Y 3(LI 03)を押し	動すると、LO 03 は有効
到	続けて放します	信号を出力する
プロジェクトも問始		アームが動き始めると、
ノロシェノトを開始	V 0 (II 00) た畑オ	LO 01 出力無効信号
し、ノームが動き知め	I U (LI UU) 2179	L0 03 出力無効信号
ـــــــــــــــــــــــــــــــــــــ		L0 00 出力有効信号
アーノ休止運動	V 9 (11 00) ナ田ナ	L0 00 出力無効信号
) 公孙正建勤	1 2 (LI 02) 2179	L0 02 出力有効信号
アームが一時停止した	V 9 (II 09) た畑オ	L0 02 出力無効信号
後も動き続ける	1 2 (LI 02) 2179	L0 00 出力有効信号
		アームが衝突する後、
		L0 00 出力無効信号
アーム衝空後も動き続	Y 6 (F 6)を押して警報信	L0 02 は有効信号を出力
ノ ム国人及 0 助 0 加	号を解除し、Y 2(LI O2)	し、
	を2回押して運動を続ける	運動を続けた後、
		L0 02 出力無効信号
		L0 00 出力有効信号
アーム停止運動	 Y 1 (LI 01) を押す	L0 00 出力無効信号
		L0 01 出力有効信号
	Y7(SI06)を押してドラ	-
	ッグティーチングを行い、	
ドラッグティーチング	Y7(SI06)を放してドラ	
	ッグティーチング信号を解	
	除する。	
ポップアップアラーム	Y 6 (F 6) を押す	-

5400©2015-2022 AUBO はすべての権利を保持します。

文字列に 标题 2 を適用してください。エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

のクリア		
		アーム運動中、
		LO 00 は有効信号を出力
	アーム運動中に衝突が発生	し、
	すると自動的にドラッグテ	アームが衝突して停止す
実行中に衝突が発生	ィーチングモードに切り替	ると、
L,	え、アームを適切な位置に	LO 00 出力無効信号
ティーチングをドラッ	ドラッグした後、Y 6(F	LO 02 は有効信号を出力
グして運動を続行	6)を押して警報信号を解	し、
	除し、Y 2 (LI 02) を 2 回	アーム運動後、
	押して運動を継続する	L0 02 出力無効信号
		LO 00 は有効信号を出力
		する。
		アームが初期位置に移動
	まず Y 6 (F 6) を押して警	する過程で、
アームが初期位置に移	報信号を解除し、アームが	LO 01 は有効信号を出力
動中に衝突し、初期位	初期位置まで動くまで Y 3	し、
置に戻り続ける	(LI 03)を押し続けてか	アームが初期位置まで移
	ら放します	動する後、
		L0 03 出力有効信号
	アームを初期位置まで移動	アームが初期位置に移動
	中に衝突が発生すると自動	する過程で、
マーノボ河即位罢に我	的にドラッグ教示モードに	LO 01 は有効信号を出力
1 ムが初知位直に移動中に衝突」 ティー	切り替わり、アームを適切	L.
動中に個天し、ティー チングをドラッグした 後、初期位置に戻り続 けます	な位置までドラッグした	アームが初期位置まで移
	後、まず Y 6 (F 6) を押し	動する後、
	て警報信号を解除し、次に	L0 03 出力有効信号
	アームが初期位置まで移動	
	するまで Y 3(LI 03)を押	
	し続けてから放します	

連動モードでは、ティーチを使用する必要がない場合、デフォルトプログラムな どのパラメータ設定が完了したら、コントロールボックスパネルのティーチ有効 化スイッチ TEACH PENDANT ENABLE/DISABLE ボタン(「7.5 結び目)ボタン を押して、ティーチングプラグを取り外す。

7.5 ティーチング有効化スイッチ

ティーチ有効化スイッチは、ティーチペンダントを使用する必要がない場合に 使用する(例えば連動モード)。一般的には、このボタンはオフの状態となる。こ のときティーチペンダントは正常に使用できる(ティーチペンダントの非常停止 ボタンは使用できる)。ティーチペンダントを抜く必要がある場合は、このボタ ンを押すことができる。この場合、ティーチペンダントの非常停止ボタン使用で きません。ティーチケーブルを抜いて、インタフェース信号を用いてロボット本

体の状態を制御することができる。

有効化スイッチは、下図のようにコントロールボックスパネルの左上側にある。

図 7-6 ティーチング有効化スイッチ位置

電気インタフェース 8

8.1 概要

この章では、制御キャビネットとロボット本体のすべての電気インタフェース について説明します。ほとんどのタイプの I/O タイプには例があり、I/O とは電 気インタフェースに出入りするデジタルおよびアナログ制御信号を指します。

電気コネクタはコントロールボックスパネル、ロボット本体腕部に分布してい る。コントロールボックスの上面板には保護カバーが付いており、使用するため にドライバで取り外す必要がある。

コントロールボックスの電気インタフェースは主に:安全 I/O と汎用 I/O に分け られる。コントロールボックスには16個の汎用デジタル入力インタフェース、 16 個の汎用デジタル出力インタフェース、4 対のアナログ電圧入力インタフェ ース、2対のアナログ電圧出力インタフェース及び2対のアナログ電流出力イン タフェースがあり、その電気誤差は±1%である。IO の通信周波数は 20 HZ であ る。

8.2 電気的な警告と注意事項

ロボットおよびIシリーズ制御キャビネットの設計と設置に際しては、以下の警 告と注意事項に従ってください。メンテナンス作業を実施するには、これらの警 告と注意事項にも従う必要がある。

V4.5.11

8.3 コントロールボックス通信インタフェース

AUBO ロボット Iシリーズ制御キャビネットは、外部機器と接続するためのさま ざまな電気インタフェースを提供しており、ユーザーはこれらのインタフェース を便利に使用することができる。

コントロールボックスの上面板保護カバーを外し、パネルにはイーサネットインタフェース、Modbus RTU インタフェース、USB インタフェース及びいくつかの電気インタフェースを提供する。(「7.3.3 コントロールボックス上面板)

Ethernet インタフェース

Ethernet インタフェースはリモートアクセスと制御に使用でき、ユーザーは 10.6.3 ネットワーク設定外部制御装置を接続する。

Modbus デバイスインタフェース

Modbus デバイスインタフェースはコントロールボックスの上面パネルにある (「7.3.3 コントロールボックス上面板)、Modbus デバイスは USB インタフェー ス及び Modbus RTU インタフェースを介して接続することができる。

ここで、Modbus RTU インタフェースピンの説明を下図に示す:

図 8-1 Modbus ピンの説明

USB インタフェース

USB インタフェースはコントロールボックスの上面板にあり(7.3 コントロールボックス) パネルの紹介を参照)、設備の接続及びソフトウェアのアップグレードと工事ファイルの エクスポートを行うことができる(使用方法は10.6.6 更新する)

8.4 コントロールボックス I/O 給電

8.4.1 内部電源供給

コントロールボックスパネル IO のデフォルトでは、下図のように内部電源供給 方式が選択されています。

図 8-2 内部電源供給の概略図

8.4.2 外部電源供給

ユーザーが外部電源を使用して電力を供給する必要がある場合は、以下の配線 方式で使用してください。

図 8-3 外部電源供給の概略図

8.5 コントロールボックス安全 I/O

8.5.1 概要

安全 I/O はいずれも二重回路安全通路(冗長設計)を備えており、単一障害が発生した場合に安全機能を失わないようにすることができる。使用する際には、安全装置および設備は安全の説明に従って設置し、全面的なリスク評価を経てから使用する必要がある。安全 I/O はコントロールボックスの上面板のオレンジ色の端子台にあり、2 つの分岐に残しておく必要がある。

8.5.2 セキュリティのヒント

8.5.3 セキュリティ I/O 機能定義

入出力	I/0 名		機能定義	
	SI00	SI10	外部非常停止	
	SI01	SI11	ガードストップ入力	
	SI02	SI12	縮小モード入力	
	SI03	SI13	ガードリセット	
1 2 2 9 1	SI04	SI14	さんじょうたいスイッチ	
	SI05	SI15	動作モード	
	SI06	SI16	ティーチング有効化メントをドラッグ	
	SI07	SI17	システム停止入力	
	S000	S010	システム非常停止(常開)	
しゅつりょく	S001	S011	ロボット運動	
	S002	S012	ロボットが停止していない	
	S003	S013	縮小モード	
	S004	S014	非削減モード	
	S005	S015	システムエラー	
	S006	S016	システム非常停止(常閉)	
	S007	S017	上位機運転指示	

テーブル8セキュリティ I/O 機能定義

2種類の固定された安全停止入力がある

▶ 外部非常停止入力:非常停止デバイスにのみ使用されます。

▶ 防護停止入力:他の安全型保護装置に使用する。

機能の違いは次のとおりです。

テーブル9外部非常停止入力と防護停止入力の違い

	非常停止	ガードストップ
ロボット停止運動	はい	はい

プログラム実行	ストップ	一時停止
ロボット電源	オフ	開く
リセット	手動	自動または手動
使用頻度	あまり使わない	サイクルごとに1回を超
		えない
再初期化が必要	ブレーキのみ解放	いいえ
ダウンタイムカテゴリ	1	2

テーブル 10 安全関連電気入力

セキュリティ入力	げんかいじょうたい		
機能	けんしゅつじかん	電源オフ時間	はんのうじかん
外部非常停止	100ms	1200ms	1300ms
ガードストップ 入力	100ms		1200ms
縮小モード入力	100ms		1200ms
ガードリセット	100ms		1200ms
さんじょうたい スイッチ	100ms		1200ms
動作モード	100ms		1200ms
ティーチングス トップ	100ms	1200ms	1300ms
システム停止入 力	100ms		1200ms

テーブル 11 安全関連電気出力

あんぜんしゅつり	げんかいじょうた	あんぜんしゅつり	げんかいじょうた
ょく	いはんのうじかん	ょく	いはんのうじかん
システム非常停止	1000ms	縮小モード	1000ms
ロボット運動	1000ms	非削減モード	1000ms
ロボットが停止し	1000ms	ンフニノエニー	1000ms
ていない		ンステムエラー	

8.5.4 デフォルトのセキュリティ構成

出荷されたマシンはすべてデフォルトのセキュリティ構成を行っており、下図 に示すように、ロボットは追加のセキュリティデバイスを追加せずに安全に使用 することができる。

図 8-4 デフォルトのセキュリティ構成の概略図

8.5.5 外部非常停止入力

1つ以上の追加の非常停止ボタンを使用する必要がある場合、ユーザーは次の例 を参照して非常停止ボタンに接続できる。

8.5.6 ガードストップ入力

ユーザーはこのインタフェースを通じて、安全な光幕、安全なレーザースキャナ ーなどの外部安全装置を接続し、アームが防護停止状態に入り、運動を停止する ことを制御することができる。

自動リセット可能な保護停止を構成する場合、ユーザーは次の例を参照して、保 護停止入力インタフェースに安全幕を使用して接続することができる。下図を参 照してください。

図 8-6 防護停止入力接続概略図 1 (内部電源供給)

オペレータが安全地帯に入ると、アームは動きを停止し、2種類の停止状態を維持します。オペレータが安全地帯を離れると、アームは停止点から始まり、自動的に動作する。この手順では、保護リセット入力を使用する必要はありません。

リセット装置付き保護停止を構成する場合、ユーザーは次の例を参照して、安全 幕を使用して保護停止入力インタフェースに接続し、安全リセットボタンを使用 して保護リセット入力インタフェースに接続することができる。下図を参照して ください。

図 8-7 防護停止入力接続概略図 2 (内部電源供給)

オペレータが安全地帯に入ると、アームは動きを停止し、2種類の停止状態を維持します。オペレータは安全地帯を離れ、安全地帯の外部から、リセットボタン でアームをリセットした後、AUBOPE 上をクリックして運転し、アームは停止 点から運転を継続する必要がある。この手順では、保護リセット入力を使用する 必要がある。

8.5.7 縮小モード入力

ユーザーはこのインタフェースを使用して、アームを縮小モードにすることが できる。縮小モードでは、ロボットアームの運動パラメータ(関節速度、TCP速度)がユーザー定義の縮小モードの範囲内に制限されます。

ユーザは、次の例を参照して、削減モード入力インタフェースに安全パッドを使 用して接続することができる。下図を参照してください。

図 8-8 縮小モード入力接続の概略図

オペレータが安全地帯に入ると、アームは縮小モードに入り、アームの運動パラ メータ(関節速度、TCP速度)はユーザ定義の縮小モードの範囲内に制限される。 オペレータが安全地帯を離れた後、アームは縮小モードから退出し、通常モード に入り、アームは正常に動作する。

8.5.8 ガードリセット入力

リセット付きデバイスの保護停止を構成する場合、ユーザーはこのインタフェ ースを通じて、外部リセットデバイス(リセットボタンなど)を接続することが できる。

次の例を参照して、セーフスクリーンを使用してガード停止入力インタフェー スに接続し、セーフリセットボタンを使用してガードリセット入力インタフェー スに接続することができる。下図を参照してください。

図 8-9 保護リセット入力接続模式図 (内部電源供給)

オペレータが安全地帯に入ると、アームは動きを停止し、2種類の停止状態を維持します。オペレータは安全地帯を離れ、安全地帯の外部から、リセットボタン でアームをリセットした後、アームは停止点から運転を継続する必要がある。こ の手順では、保護リセット入力を使用する必要がある。

このような構成を使用する場合、ユーザーは AUBOPE 選択により 保護をリセットして手動リセットに停止する必要がある。

8.5.9 トライステートスイッチ入力

ユーザーはこのインタフェースを通じて、プログラムを検証する際に使用する 外部安全装置(3位置有効化スイッチなど)を接続することができる。

ユーザは次の例を参照して、3位置有効化スイッチを使用して3状態スイッチ入 カインタフェースを接続することができる。下図を参照してください。

図 8-10 トライステートスイッチ入力接続概略図

検証モードでは、3 位置有効化スイッチが有効化位置(中間位置)にあるときだ けアームが動き始め、ユーザーが 3 位置有効化スイッチを放したり押したりす ると、3 位置スイッチは非有効化位置にあり、アームは動きを停止します。

このような構成を使用する場合、ユーザーはロボットが検証モ ードであることを確認する必要がある。ユーザーは AUBOPE 構成 操作モードを認証モードにすることができ、操作モードを通じ て構成操作モードを認証モードに入力することができる。
8.5.10 動作モード入力

ユーザーはこのインタフェースを通じて、外部安全機器(モード選択スイッチな ど)を接続し、ロボット動作モードを選択することができる。ユーザーは次の例 を参照して、安全選択スイッチを使用して動作モード入力インタフェースを接続 することができる。下図を参照してください。

図 8-11 動作モード入力接続の概略図

ユーザが選択スイッチをAレンジに調整すると、ロボットは通常モードに入り、 ユーザはロボットを正常に使用することができる。

ユーザーが選択スイッチを B レンジに調整すると、ロボットは検証モードに入 ります。このモードでは、3ステートスイッチ入力のみが有効な場合、アームは 検証プロジェクトファイルを実行し、正常に動作します。三状態スイッチ入力が 無効である場合、アームは直ちに動きを停止する。

8.5.11 ティーチング有効化入力をドラッグ

ユーザーはこのインタフェースを通じて、外部ドラッグ教示信号入力を受信し、 アームはドラッグ教示可能状態に入ることができる。ユーザは、ティーチペンダ ントの力制御ボタンを外した状態で、教示をドラッグする例を参考にすることが できる。

図 8-12 ティーチング入力接続のイメージをドラッグ

8.5.12 システム停止入力

ユーザーはこのインタフェースを通じて、外部停止信号入力を受信し、ロボット を1種類の停止状態に制御することができる。この入力は、複数のマシンが連携 している状態で、共通非常停止回線を設定することで、他のマシンと非常停止を 共有するために使用できる。オペレータは、1台の機械の非常停止ボタンによっ て、全ラインの機械が非常停止状態に入ることを制御することができる。

ユーザは、システム非常停止出力がシステム停止入力インタフェースに接続さ れた 2 台のマシンが非常停止機能を共有する例を参照することができる。下図 を参照してください。

図 8-13 システム停止入力接続概略図

1台が非常停止状態になると、もう1台もすぐに非常停止状態になり、2台のマ

エラー![ホーム] タブを使用して、ここに表示する 文字列に 标题 2 を適用してください。エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

シンが非常停止機能を共有することができる。

8.5.13 システム非常停止出力 (常開)

ユーザーはこのインタフェースを通じて、ロボットが非常停止状態になったと きに外部に非常停止信号を出力することができる。

ユーザーは次の例を参照して、外部アラームランプをシステム非常停止出力インタフェースに接続できる。下図を参照してください。

図 8-14 システム非常停止出力接続概略図

この構成では、ロボットが非常停止状態になると、システム非常停止信号を外部 に出力し、外部アラームランプが点灯します。

8.5.14 ロボット運動出力

ユーザーはこのインタフェースを通じて、アームが正常に動いているときに、外部にロボット運動信号を出力することができる。

ユーザーは次の例を参考にして、外部 LED をロボット運動出力インタフェース に接続することができる。下図を参照してください。

図 8-15 ロボット運動出力接続模式図

8.5.15 ロボットが出力を停止していない

ユーザーはこのインタフェースを通じて、ロボットが停止信号を受信して減速 中で、まだ完全に停止していない場合、ロボットが停止していない信号を外部に 出力することができる。

ユーザーは次の例を参考にして、外部 LED をロボット運動出力インタフェース に接続することができる。下図を参照してください。

図 8-16 ロボットが停止していない出力接続イメージ

この構成では、アームが停止信号を受信して減速中であり、完全に停止していない場合、外部に対してロボットが停止していない信号を出力し、外部ロボットが 停止していない状態のランプが点灯する。

8.5.16 縮小モード出力

ユーザは、このインタフェースを介して、アームが縮小モードに入ったときに、 外部に縮小モード信号を出力することができる。

ユーザーは次の例を参照して、外部 LED を縮小モード出力インタフェースに接続できる。下図を参照してください。

図 8-17 縮小モード出力接続の概略図

この構成では、アームが縮小モードに入ると、外部に縮小モード信号が出力され、 外部縮小モード LED が点灯する。

8.5.17 非削減モード出力

ユーザは、このインタフェースを介して、アームが非縮小モードに入ったときに、 外部に非縮小モード信号を出力することができる。

ユーザーは次の例を参照して、外部 LED を非縮小モード出力インタフェースに 接続できる。下図を参照してください。

図 8-18 非縮小モード出力接続の概略図

この構成では、アームが非縮小モードに入ると、外部に非縮小モード信号が出力 され、外部非縮小モード LED が点灯する。

8.5.18 システムエラー出力

ユーザーはこのインタフェースを通じて、ロボットシステムが間違っている場 合、外部にシステムエラー信号を出力することができる。

ユーザーは次の例を参照して、外部 LED をシステムエラー出力インタフェース に接続できる。下図を参照してください。

図 8-19 システムエラー出力接続モード

この構成では、ロボットシステムのエラーアラームが発生した場合、外部にシス テムエラー信号を出力し、外部システムエラーランプが点灯します。

8.5.19 外部非常停止出力 (常閉)

ロボットに非常停止が発生していない場合、このインタフェースは外部に対し て信号を出力し続け、8.5.13 外部非常停止出力(常開)が「非」である関係で、 ユーザーはこの信号を使用して複数のアームを同時に停止させることができる。

ユーザーは次の例を参照して、外部 LED から外部非常停止出力(通常オフ)インタフェースに接続できる。下図を参照してください。

図 8-20 複数のアーム共有非常停止接続モード

8.5.20 上位機運転指示出力

ユーザは、このインタフェースを介して、上位機が運転を開始すると、外部に対して上位機運転信号を出力することができる。

ユーザは次の例を参考にして、外部 LED を上位機運転指示インタフェースに接続することができる。下図を参照してください。

図 8-21 上位機運転指示出力接続モード

8.6 コントロールボックス内部 I/O

コントロールボックス内部 IO は内部機能インタフェースであり、コントローラ 内部インタフェースボードの I/O 状態表示を提供し、この部分のインタフェース はユーザーに開放されておらず、ユーザーはティーチングインタフェースを通じ て内部 I/O 状態を見ることができる (「10.3.1 コントローラ I/O)。コントロールボ ックス内部 IO の状態説明は次の表の通りです。

テーブル 12 コントロールボックス内部 I/O 状態説明

インプット	インターフェースボード IO 状態
CI00	状態有効表示連動モード / 状態無効表示手動モード
CI01	状態有効表示アクティブモード/状態無効表示ドリブンモード
CI02	コントロールボックス接触器
CI03	コントロールボックス急停止
CI10	サーボオン
CI11	サーボオフ
CI12	コントロールボックス接触器
CI13	コントロールボックス急停止
しゅつりょく	インターフェースボード IO の機能と状態
しゅつりょく CO00	インターフェースボード IO の機能と状態 待機指示
しゅつりょく CO00 CO01	インターフェースボード IO の機能と状態 待機指示 きゅうていしひょうじ
しゅつりょく CO00 CO01 CO02	 インターフェースボード IO の機能と状態 待機指示 きゅうていしひょうじ 状態有効表示連動モード / 状態無効表示手動モード
しゅつりょく CO00 CO01 CO02 CO03	インターフェースボード IO の機能と状態 待機指示 きゅうていしひょうじ 状態有効表示連動モード / 状態無効表示手動モード 上位機運転指示
しゅつりょく CO00 CO01 CO02 CO03 CO10	インターフェースボード IO の機能と状態 待機指示 きゅうていしひょうじ 状態有効表示連動モード / 状態無効表示手動モード 上位機運転指示 スペア
しゅつりょく CO00 CO01 CO02 CO03 CO10 CO11	インターフェースボード IO の機能と状態 待機指示 きゅうていしひょうじ 状態有効表示連動モード / 状態無効表示手動モード 上位機運転指示 スペア きゅうていしひょうじ
しゅつりょく CO00 CO01 CO02 CO03 CO10 CO11 CO11	インターフェースボード IO の機能と状態 待機指示 きゅうていしひょうじ 状態有効表示連動モード / 状態無効表示手動モード 上位機運転指示 スペア きゅうていしひょうじ スペア

8.7 コントロールボックス汎用 I/O

コントロールボックスの上面板は16個の汎用デジタル入力インタフェース、16 個の汎用デジタル出力インタフェース、4対のアナログ差分入力インタフェース、 2対のアナログ電圧出力インタフェース及び2対のアナログ電流出力インタフェ ースを提供し、その電気誤差は±1%である。

次の表に、各汎用 I/O の機能定義を示します。ユーザーが使用する場合は、必ず 表の要件に従ってください。また、コントロールボックスパネルのボタンとスイ ッチは I/O の一部を占有しているので、使用時に注意してください。

外部機器を接続する場合は、すべての外部機器を制御キャビネ ットと共有する必要がある。

8.7.1 汎用デジタル I/O インタフェース

汎用デジタル I/O インタフェースは、コントロールボックスの上面パネルインタ フェースボードにある。

コントロールボックス上の16人のユーザーは汎用デジタル入力端子(後に「DI 端子」でデジタル入力端子を表す)を使用でき、それらはすべて NPN の方式で 動作し、つまり DI 端子と地導通はトリガ動作ができ、DI 端子と地切断は動作を トリガしない。

DI 端子は、スイッチボタン、センサ、PLC、または他の AUBO ロボットの動作 信号を読み取ることができる。

コントロールボックスの16人のユーザは、NPNとして動作する汎用デジタル出 力端子(後にデジタル出力端子を「DO端子」と表示)を使用できる。DO端の 動作手順は、論理 [1] が与えられると DO 端と GND が導通する下図に示すこと ができる。論理「0」が与えられると、DO端子とGNDは切断される。

図 8-22 DO 端 NPN 動作方式概略図

۷۹.5.

DO 端子は負荷に直接接続することも、PLC や他のロボットと通信することもできる。

ユーザは、以上のデジタル IO をティーチ AUBOPE ソフトウェアで制御することができる。

V4.5.11 エラー! [ホーム] タブを使用して、ここに表示する 文字列に 标题 2 を適用してください。エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

イン	DIOO	DI01	DI02	DI03	DI04	DI05	DI06	DI07
プット	DI10	DI11	DI12	DI13	DI14	DI15	DI16	DI17
ιø	D000	D001	D002	D003	D004	D005	D006	D007
つりょく	D010	D011	D012	D013	D014	D015	D016	D017

テーブル 13 汎用デジタル I/O インタフェース

テーブル 14 ユーザーが使用できる汎用デジタル入出力インタフェースの電気パラメータ仕 様

DI/DO	パラメータ	仕様
DI	にゅうりょくしんごうけ いしき	ドレイン入力 無電圧接点入力 NPN オープンコレクタトランジスタ
	インプットモード	入力信号電流
	電気仕様	5mA/DC24V
DO	しゅつりょくけいしき	トランジスタ(ドレイン型)
	電気仕様	300mA/DC24V

テーブル15ユーザが使用できる汎用デジタル入力端子の電気パラメータ

パラメータ項目	最小值	最大值
単一 DI 端子入力電圧	O V	24 V

例

次に、一般的な配線例をいくつか挙げます。

DI 端子接続ボタンスイッチ

下図に示すように、DI 端子は常開ボタンを介してグランド(G) に接続すること ができ、ボタンが押下されると DI 端子と GND が導通し、動作をトリガする。 ボタンが押されていない場合、DI 端子と GND が切断されると、動作はトリガさ れません。これは最も簡単な配線例です。 エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。エラー! [ホ ーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

V4.5.11

図 8-23 DI 端子接続ボタンスイッチ概略図

DI 端接続二端センサ

下図に示すように、DI 端と GND の間にはセンサが接続されており、センサ動作 時に OUT 端と GND 端の電圧差が小さい場合には、動作をトリガすることもで きる。センサが動作していない場合、回路は切断され、動作はトリガされません。

図 8-24 DI 端接続二端センサ概略図

DO 端子接合荷重

図 8-25 DO 端子接合負荷の概略図

8.7.2 アナログ I/O インタフェース

アナログ I/O インタフェースはコントロールボックスの背面インタフェースボ ードに位置し、4対のアナログ電圧入力インタフェースがあり、VI 端子で表し、 2 つのアナログ電圧出力端子と 2 つのアナログ電流出力端子があり、それぞれ VO と CO で表し、下図のようになる。

図 8-26 アナログ I/O インタフェース概略図

テーブル 16 ユーザ使用可能な汎用アナログ入出力

インプッ	VIO	アナログ電圧入力	VI2	アナログ電圧入力
۲	VI1	アナログ電圧入力	VI3	アナログ電圧入力
しゅつり	VOO	アナログ電圧出力	C00	アナログ電流出力
ょく	V01	アナログ電圧出力	C01	アナログ電流出力

テーブル17ユーザが使用できる汎用アナログ入出力インタフェースの電気パラメータ仕様

を選択してオプ ションを設定し ます。	でんあつ	でんりゅう
インプット	0~+10V	_
しゅつりょく	0~+10V	0~20mA
せいど	$\pm 1\%$	$\pm 1\%$

テーブル 18 VI 端子の電気パラメータ:

パラメータ項目	最小值	最大值	単位
にゅうりょくでん あつ	0	+10	V
にゅうりょくてい こう	100K		Ω
VI サンプリング解 像度	12		BITS
VI サンプリング精	10		BITS

エラー! [ホーム] タブを使用して、ここに表示する

文字列に 标题 2 を適用してください。エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

庄	
反	

テーブル 19 VO 端の電気パラメータ:

パラメータ項目	最小值	最大值	単位
単一 VO 端子出力電 圧	0	+10	V
単一CO端子出力電 流	0	20	mA

例

アナログ電圧入力配線方法

アナログ電圧入力は、下図のような外部センサ配線方法の例を参照することが できる。

図 8-27 アナログ電圧入力接続センサ

アナログ電圧出力配線方法

アナログ電圧出力は、下図に示す配線方法を参照することができる。

アナログ電流出力配線方法

アナログ電流出力は、下図に示す配線方法を用いることができる。

図 8-29 電流アナログ出力接続電流源

8.7.3 アラーム信号インタフェースのクリア

コントロールボックスの上面パネルインタフェースボードの F6 はアラーム信 号をクリアするインタフェースであり、この信号はローレベルで有効である。

8.8リモートスイッチ制御 1/0 インタフェース

リモートスイッチングマシン制御 I/O インタフェースは、下図のようにコントロ ールボックスの上面パネルインタフェースボードにある。

図 8-30 リモートスイッチ制御 I/O インタフェース概略図

リモートスイッチングマシンを使用して I/O インタフェースを制御することで、 ティーチとロボット本体をオンまたはオフにすることができ、ティーチを使用す る必要はありません。

テーブル 20 リモートスイッチ制御 I/O インタフェース

インプット	機能の説明
LI04	リモート電源オン信号入力インタフェース
LI05	リモートシャットダウン信号入力インタフェース

8.8.1 リモート電源オン

この例では、リモート電源投入インタフェースを接続する方法、すなわち図示ス イッチが閉じた後、ティーチングおよびロボットが電源を投入する方法を説明し ます。

図 8-31 リモート電源オン配線図

8.8.2 リモートシャットダウン

この例では、リモートシャットダウンインタフェースを接続する方法、すなわち 図示スイッチが閉じた後、ティーチングおよびロボットが電源を切る方法を説明 します。

図 8-32 リモートシャットダウン配線図

8.9連動制御 I/O インタフェース

連動制御 I/O インタフェースはコントロールボックス背面インタフェースボー ド上にあり、LI/LO で表し、下図のようになる。

図 8-33 連動制御 I/O インタフェース概略図

連動制御インタフェースを使用すると、ティーチを外してロボット本体の運動

V4.5.11 エラー! [ホーム] タブを使用して、ここに表示する 文字列に 标题 2 を適用してください。エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

状態を制御することができる。具体的な使用例については、「7.4.2 連動モード。

8.10 ロボット本体工具 //O コネクタ

ロボット本体の腕部 3 カ所の工具先端には 8 ピンの小型コネクタがあり、ロボ ット先端で使用される特定の工具(クランプなど)に電源と制御信号を供給する ことができ、その電気誤差は±10%前後である。線順を図に示します。

図 8-34 ロボット本体工具 I/O コネクタ概略図

ケーブルシーケンス機能テーブル

ケーブルは Lumberg RKMV 8-354 工業ケーブルを選択し、内部の 8 本の異なる 色の線はそれぞれ異なる機能を表し、下表に示す。

カラー	シグナル	ピン
白	GND	1
ブラウン	12/24V	2
グレー	DI/O 0	5
青	DI/O 1	7
グリーン	DI/O 2	3
イエロー	DI/O 3	4
赤	AI O	8
ピンク	AI 1	6

電源の電気パラメータ

グラフィカルユーザーインタフェースの IO タブでは、内部電源を 0 V、12 V、 24 V に設定します。電気仕様は次の通りです。

テーブル 22 電源の異なるモードでの電気パラメータ

パラメータ	最小值	標準	最大值	単位
24 V モードの電源電圧	23	24	25	V
12 V モードの電源電圧	11.5	12	12.5	V
2 つのモードの電源電流	-	0.8	1.0	А

ツールのデジタル出力

デジタル出力は NPN の形式で実現され、デジタル端子出力が活性化されると、

文字列に 标题 2 を適用してください。エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

対応するコネクタは駆動されて GND をオンにし、デジタル出力端子が無効になると、対応するコネクタはオープンになり、電気仕様は以下の通りである:

テーブル 23 コ	ソールディジ	タル出力電気パ	ラメータ
-----------	--------	---------	------

パラメータ	最小值	標準	最大值	単位
かいほうでんあつ		どうでんげ	んでんあつ	
1A 電流入力時の電圧	0.35	0.4	0.85	А
にゅうりょくでんりゅう	0.35	0.4	0.5	А
GND を通る電流	0.35	0.4	0.5	А

ツールの数値入力

デジタル入力は弱いプルダウン抵抗器を備えた NPN の形で実現され、電気仕様 は下図のように:

テーブル 24 ツールディジタル入力電気パラメータ

パラメータ	最小值	標準	最大值	単位
にゅうりょくでんあつ	-0.5	-	Vout+2	V
ロジック低電圧	0	1.5	2	V
ロジック高電圧	Vout-4	Vout	Vout+2	V
にゅうりょくていこう	-	4.3	-	kΩ

ツール IO

テーブル 25 工具 IO 電気パラメータ

パラメータ	最小值	標準	最大值	単位
電圧モードでの入力電圧	0	-	10	V
0 V∽10 V の電圧範囲にお	-	2.5	-	mV
ける入力解像度				

アナログ端子電気パラメータ

テーブル 26 アナログ端子の電気パラメータ

パラメータ項目	最小值	最大值
電圧入力アナログ量 AI 0	OV	+10 V
電圧入力アナログ量 AI 1	OV	+10 V

工具とクランプを接続するときは、工具からワークが落下する など、電源を遮断しても危険がないようにしてください。

9 クイックスタート

9.1 ロボットの基礎機能の紹介

ロボット本体はロボットシステムの実行部分であり、ベースはロボット本体を 取り付けるところであり、肩と肘は大幅な動作を行い、腕1と腕2はより細かい 動作を行い、腕3はエンドツールを接続することができる。

コントロールボックスはロボットシステムの制御部分であり、ロボットの作業 空間における移動位置、姿勢、軌跡、および接続機器の電気入出力端を制御する ことができる。

ティーチペンダントはロボットシステムにおける表示と操作部分であり、メニ ュー操作、プログラミング、オンライン操作が可能なマンマシンインタラクショ ンインタフェースを有し、ユーザーはティーチペンダントインタフェースに表示 された AUBOPE ソフトウェア操作及びロボット本体を制御して関連タスクを実 行することができる。

関連図は図および図

9.2 ロボットシステムのインストール

AUBOPE を使用するには、ロボット本体とコントロールボックス(具体的な設置説明と警告情報は6章ロボット設置を参照)を設置してから、以下の手順を参照してロボットシステムを設置することができる。

- 箱を開けてロボット本体を取り出し、コントロールボックス、ティーチペン ダント、および関連ケーブルを制御する。
- 2. ロボット本体を耐震の頑丈な表面に取り付ける、
- 3. コントロールボックスを適切な位置に置く、
- 4. ケーブルを対応するロボット本体、コントロールボックス、およびティーチ に接続します。(具体的な接続説明と警告情報は 6.6 ケーブル接続を参照)、
- 5. 第6章ロボットの取り付け中のセキュリティ情報が遵守され、警告情報が回 避されている、

6. コントロールボックスの電源プラグを差し込む、

9.3 ロボットシステムの電源投入

電源投入前準備 9.3.1

- 1. ロボットとコントロールボックスが完全に接続されているかどうかをチェ ックします。
- 2. ティーチペンダントとコントロールボックスの間が完全に接続されている かどうかを確認します。
- 3. コントロールボックスの電源ケーブルが正常に接続されているかどうかを 確認します。
- 4. コントロールボックスの電源スイッチは、電源が投入されていないときにオ フになっています。
- 5. ティーチング器の急停止スイッチが跳ね上がった状態になっている。
- 6. モード選択ボタンは正しい位置にある。
- 7. ロボットが周囲の人や設備に触れないようにします。

9.3.2 システムオン

コントロールボックスの電源投入

ロボットシステムに電源を投入するには、コントロールボックスをオンにしな ければならない。電源ケーブルの品字プラグを商用交流電源ソケットに差し込ん で、電源スイッチをオフからオン状態にして、電源ランプが点灯する。ロボット システムの電源投入に成功した。

図 9-1 コントロールボックス電源スイッチ及びランプの概略図

ティーチングおよびロボット本体の電源投入

- MODE MANUAL/LINKAGE ボタンから使用モードを選択します(ロボットの動作モードには手動モード、連動モードの2種類がある。デフォルトのモード手動モード、具体的な使用説明は 7.4 動作モード選択。)
- 2. スタンバイ LED (STANDBY) が常に点灯するのを待ってスタンバイ状態に 入ります。
- 3. ティーチの左上にあるスタートボタンを押すと約1s、青いランプが点灯し、 ロボットはティーチと同じ電源を入れ、ティーチ画面が点灯します。
- スタートボタンおよび LED インジケータの電源投入状態を下図に示します。

図 9-2 ティーチペンダント起動ボタン及び LED オンランプの概略図

9.4 ロボットシステムのシャットダウン

ロボットシステムの電源を切る順序は、ティーチとロボットの電源を切ってから、コントロールボックスの電源を切ります。

ティーチングとロボットの電源を切る

正常終了:プログラムを終了し、ティーチ操作インタフェースの右上隅ソフト ウェアクローズボタン

②を押す、

強制シャットダウン:ティーチング器の左上隅のスタートボタンを長押しする と約3s、青ランプが消え、ティーチング器とロボットが電源を切る。

コントロールボックスの電源を切る

コントロールボックスの前面パネルの電源スイッチを OFF 位置に押します。

エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。エラー! [ホ ーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

V4.5.11

ソケットから電源ケーブルを直接外してシステムを閉じる と、ロボットファイルシステムが破損し、ロボット機能が障 害になる可能性がある。

9.5 **クイックスタートシステム**

ロボットシステムを起動する前に、ロボット本体とコントロールボックスが正 しく取り付けられていることを確認してください。

- 1. コントロールボックスの電源スイッチを押して ON 状態にし、電源ランプ と待機ランプが点灯するのを待つ、
- ティーチ上のスイッチボタンを押して AUBOPE を起動すると、画面に文字 が表示されます。
- 3. タッチパネルにポップアップ窓が現れ、システムが初期化インタフェースに 入ることを指示する。
- 4. ツールを選択して決定する、
- 5. ロボット本体が触れる範囲(作業スペース)の外に立ってください。
- 起動ボタンをクリックしてロボットブレーキシステムを解放すると、ロボット本体が振動してカチッと音がして、ロボットシステムが起動済みで、プロ グラム待ちの状態になっていることを示します。

10 ティーチペンダント

概要 10.1

AUBOPE (AUBO ROBOT PROGRAMMING ENVIEONMENT) は、AUBO ロボッ トプログラミング環境の略であり、ティーチングマシンのタッチスクリーンに表 示され、この人機インタラクションインタフェースを通じて、ロボット本体と制 御キャビネットを操作し、ロボットプログラムを実行し、作成し、ロボットログ 情報を読み取ることができる。

図 10-1 ティーチペンダントの概略図

シーケ			
ンス番	の名前をあげる	機能	
号			
1	雪酒コイッチ	ティーチングソフトウェアのオンまたは強制オ	
1	竜源スイッナ	フに使用します。	
0	LCD タッチスクリー	ロギットの撮作及び出能性報の実子	
ے 	ン	ロホットの採作及の仏感情報の衣小。	
		ティーチ上の急停止ボタンは、撮影後にロボット	
3	非常停止ボタン	の非常停止を実現し、通常モードに復帰するに	
		は、ボタンに表示された方向に回転します。	
		3 位置有効化スイッチに属し、危険回避のための	
4	ドラッグ制御スイ	OFF(開放)⇒ON⇒OFF(押下)の3位置動作が可	
4	ッチ	能で、スイッチが ON 状態の場合、ロボットをドラ	
		ッグしてティーチング操作を行うことができる。	
5	ティーチングコネ	コントロールボックスとケーブル接続するため	
U U	クタソケット	のインタフェース。	

10.2 ティーチペンダント操作インタフェース

10.2.1 ユーザーログイン

ティーチングソフトウェアが起動したら、ユーザー免責声明画面に入り(チェッ クしてもうヒントを出さないことができ、その後 AUBOPE ソフトウェアを実行 するとこの画面は表示されなくなる)、クリックして通過すると、ユーザーログ インウィンドウがポップアップ表示されます:

用户	admin	-
密码	请输入密码	S)
	自动登录	

図 10-2 ログインインタフェース

ユーザーはアカウントを選択し、パスワードを入力してからログインする必要 がある。

テーブル 27 ユーザー名分類

ユーザー名	パスワード	権限の制限
admin (管理者)	初期パスワードは 1 で、ユー ザーは変更できる	最高権限、制限なし
オペレータ	初期パスワードは 1 で、ユー ザーは変更できる	セキュリティ構成 (10.5)及び 更新(10.6.6) 使用不可
default(デフォルト ユーザー、アクティ ブに選択できませ ん)	デフォルトパスワードは 1 で、ユーザーは変更できませ ん	セキュリティ構成 (10.5)及び 更新(10.6.6) 使用不可

ユーザー名はカスタムをサポートしていません

- ▶ 自動ログインをチェックすると、ソフトウェアが再びオンになると自動的に 選択されたユーザーインタフェースに入ります。
- 自動ログインをキャンセルしたり、ユーザーログインを切り替えたりするに

は、画面右上のログアウトアイコンをクリックする必要がある。

- ログアウト操作を確定すると、実行中のプロジェクトがあれば実行を停止し、 ユーザーログインインタフェースに切り替えます。
- 連動モードでは、ユーザーはログインユーザーを選択し、自動ログインオ プションを選択することをお勧めします。チェックしていない場合は、 default ユーザーに入ります。
10.2.2 初期インタフェース

ティーチングソフトウェアが起動すると、次のウィンドウが表示されます。

		机器人初如	台化		G•X
工具名称	flange_center	•			
运动学名称	flange_center				
末端位置X(m)	0.000000	末端位置Y(m)	0.000000	末端位置Z(m)	0.000000
末端姿态RX(deg)	0.000000	末端姿态RY(deg)	0.000000	末端姿态RZ(deg)	0.000000
动力学名称	flange_center				
负载(kg)	0.00				
重心X(m)	0.000000	重心Y(m)	0.000000	重心Z(m)	0.000000
	关机	保存		启动	

図 10-3 初期インタフェース

ツール名で指定したツールフランジの中心を選択できる。ユーザーは、10.4.2ツ ールの定格を選択して設定できる。

保存→起動ボタンをクリックして、ティーチング画面に進みます。

注意:初期化インタフェースの左上隅の空白(約5秒)を長押しした後、直接ソ フトウェアに入ることができる。

10.2.3 ロボット移動制御

ロボットティーチングパネル

ティーチングソフトウェアパネルはロボットのティーチング操作に使用され、 ユーザーはパネル上のアイコンをクリックすることでロボットを移動します。ま た、パネルはロボットの運動情報をユーザーにフィードバックします。

エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。エラー! [ホ ーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

V4.5.11

図10-4 ロボット教示パネル概略図

テーブル 28 ロボットティーチングパネル

N. 1-N	のなぜもという
シーケンス	の名則をめける
番号	
1	現在のログインユーザー
2	ログアウトボタン
3	ソフトウェアクローズボタン
4	メニューバーのオプション
5	3 Dシミュレーションモデル
6	動作モードオプション
7	ステップモード設定
8	位置制御
9	座標系の選択
10	アーム位置姿勢パラメータ表示
11	ターゲット選択
12	姿勢制御
13	ジョイントコントロール
14	ゼロ姿勢と初期姿勢ボタン
15	速度表示
16	衝突レベル表示
17	日付と時刻表示
18	そくどせいぎょ

1現在のログインユーザ

ソフトウェアのヘッダーバーの中央に現在のログインユーザーの名前が表示さ れます。ログアウトボタンでログインユーザーを切り替えることができる。詳細 は、10.2.1 ユーザーログイン。

2 ログアウトボタン

とします。

3 **ソフトウェアクロ**ーズボタン

4 メニューバーオプション

図 10-5 メニューバーの概略図

メニューバーのオプション名をクリックすると対応する名前パネルに切り替え られ、ユーザーが操作しやすくなります。選択したパネルには濃い背景の薄い文 字が表示されます。

53Dシミュレーションインタフェース

図 10-63D シミュレーションインタフェースの概略図

ロボットシミュレーションインタフェースの役割は、実際のアームから離れ、ユ ーザーが作成したプログラムを検証するためです。ユーザは、シミュレーション 環境に基づいてロボットの制御プログラムが合理的で正しいかどうかを検証す ることができる。

インタフェースの上側にあるアイコンボタンの機能は次のとおりです。

🕒 ベース平面を表し、クリックするとシミュレーションインタフェースのべ ース参照平面を隠すことができる

- R:実際の路点モデルを表し、クリックすると隠すことができる
- ○: ユーザー座標系を表し、クリックすると隠すことができる
- □ : 目標点モデルを示し、クリックすると非表示になる
- : 縮小ボタン

V4.5.11 エラー! [ホーム] タブを使用して、ここに表示する 文字列に 标题 2 を適用してください。エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

. 下へパンボタン	
←: 左へパンボタン	
▶ 反時計回り回転ボタン	
: リセットボタン	

6動作モード選択

図 10-7 動作モード選択イメージ

リアルアームを選択すると、プログラムはリアルロボット上で実行され、ロボットはプログラムに従って動作します。このインタフェースにはロボットパラメータのみが表示され、シミュレーションアームは表示されません。

シミュレーションアームを選択した場合、リアルロボットは動作しません。ロボ ットプログラムを完了するには、まずシミュレーションロボットを選択し、プロ グラムを実行することでプログラムが正しいかどうかを検証し、ロボットアプリ ケーションの安全性を高めることができる。

7 ステップモード 設定

🗹 步;	进模式	
位置	步进	
w.	0.50	≜ mm
姿态	步进	
w.	0.50	🔺 deg
关节	步进	
Ŧ	0.50	🔺 deg

図 10-8 ステップモード概略図

ティーチングの精度を高めるためには、ステップ制御という機能を追加する必要があり、制御された変数をステップで正確に変化させることができる。

- ステッピングモードオプションボックスをチェックして、ステッピング制御 方式を使用してステッピングモードをアクティブにすることができる。
- ユーザは、入力ボックスの左右のボタンをクリックすることでアーム運動の ステップサイズを調整することができる。
- 位置ステップ制御は、ミリ単位で末端位置の移動を制御するステップサイズ を表し、設定可能範囲は 0.10~10.00 ミリです。
- > 姿勢ステップ制御は、末端姿勢の運動角度を制御するステップ長を表し、単位は度であり、設定可能範囲は 0.10~10.00 度である。
- 関節ステップ制御は、各関節の運動角度を制御するステップサイズを表し、 単位は度で、設定可能範囲は 0.10~10.00 度です。
- ステップ制御は末端制御及び関節軸制御にのみ有効である。

8 位置制御

アームの端部は、基底座標系 (base)、端座標系 (flange_Center)、およびユーザ ー定義平面座標系に基づいて位置制御を完了することができ、ユーザーは端部に 異なる座標系でのティーチングを行うことができる。

V4.5.11

図 10-9 位置制御模式図 (base)

図 10-10 位置制御模式図 (flange _ Center)

9座標系

ユーザは、基本座標系、終端座標系、およびユーザカスタム座標系に基づいてロ ボットの運動状態を制御することができる。次のことができる。10.6.5 で設定し たアームシステムを再起動した後、選択した座標系は表示を維持します。

基底座標系 (base)

ティーチングインタフェースでベース座標系 (base) 制御ロボットを選択すると、 アームは下図のような座標系で動きます。

図 10-11 基底座標系 (base)

終端座標系(flange_Center)

ティーチインタフェースで末端座標系 (flange _ Center) 制御ロボットを選択すると、アームは下図のような座標系で動きます。

ユーザー定義座標系

ユーザが座標系をカスタマイズするには、ユーザが実際の状況に応じて自分で 座標系を設定する必要がある。詳細は、「エラー!参照元が見つかりません。エ ラー!参照元が見つかりません。章、設定が完了すると、ティーチングインタフ ェースのドロップダウンメニューから座標系名を選択できる。

10アーム位置姿勢パラメータ表示

机械管	位置姿态	
位置((m)	姿态(deg)
X :	0.000000	RX: 89.999962
Υ:	-0.215500	RY: 0.000000
Z:	0.985000	RZ: 0.000000

図 10-13 アーム位置姿勢パラメータ概略図

位置における XYZ は、選択座標系(基軸座標系、終端座標系、ユーザカスタム 座標系)におけるツールフランジの中心点(選択ツール座標系)の座標を表し、 姿勢における RX、RY、RZ は、選択座標系に対して回転する角度値を表し、選 択座標系を一定の順序で3回回転させた方位の記述である。

11 目標選択

[ターゲット選択](Target Selection)ドロップダウンメニューでは、表示位置を選択 するターゲットがフランジ重心 (デフォルト) または指定された tool 終端機能を 提供します。ユーザーは、10.4.2 ツールの定格の章を参照してください。

目标	
flange_center	•

図 10-14 ターゲット選択

12 姿勢制御

図 10-15 姿勢制御模式図 (base)

図 10-16 姿勢制御模式図 (flange _ Center)

13 関節制御

図 10-17 ジョイント制御模式図

ロボットには全部で 6 つの自由度があり、下から上までの各関節はそれぞれ関 節1~関節6と命名され、それぞれロボットの6つの関節に対応している。ユー ザは、ティーチングインタフェース上の関節制御ボタンを使用するだけで、各ア ーム関節の回転を制御することができる。

「+」は当該関節中のモータが反時計回りに回転することを示し、「-」は当該関 節中のモータが時計回りに回転することを示し、上図の関節制御模式図を参照す ることができる。

単位: 度。

アームが再電源すると関節角の数値色に差が出て、5°以上移動すると色が正常に 戻ります。

14 ゼロ姿勢と初期姿勢ボタン

図 10-18 ゼロ姿勢及び初期姿勢模式図

ゼロ姿勢: ゼロ位置、長押しでアームをゼロ位置に戻すことができる。

初期姿勢:初期位置、長押しでアームを初期位置に戻すことができる。ユーザは、 ティーチングインタフェースを介して 10.4.1 初期ビット姿勢標定章では、ロボ ットの初期位置を任意に設定します。

図 10-19 ゼロビット姿勢と初期ビット姿勢(デフォルト)の概略図

15 速度表示

図 10-20 速度表示の概略図

ここでは、ロボット本体のリアルタイム運転速度を表示することができる。単位 mm/s。

16 衝突レベル表示

図 10-21 衝突レベル表示イメージ

ここにロボット本体の現在の衝突レベルを表示できる。セットコマンド設定や ロボットセキュリティ設定画面から設定できる。

17 日時表示

20	17	1	6.31	
20	1.		0.34	

図 10-22 日時表示イメージ

現在の日付と時刻を表示できる。10.6.2日付時刻設定を選択して設定できる。

18 速度制御

図 10-23 速度制御模式図

ユーザは、スライダを制御することにより、アーム教示時の運動速度(速度最大 値のパーセント)を調整することができる。

ティーチングモードでは、速度スライダを用いてアームのティーチング運動速 度を制御することができる。アームが正常に動作し始めると、速度スライダによ ってアームの運動速度を制御することはできません。

10.3 ロボット I/O 設定と状態表示

ロボットシステムの電気 I/O (「8 電気インタフェース)は、次の小さなノットで 表示および設定できる。I/O 設定パネルには、コントローラ I/O 設定、ユーザ I/O 設定、ツール端 I/O 設定がある。

10.3.1 コントローラ I/O

机械臂示教 在线编程 设置 扩展 系统信息 关于																
IO状态							C	ontrolle	er IO 状a	态						
Controller IO	安全10															
用户10	5100	SI10	SI01	SI11	SI02	SI12	SI03	SI13	SI04	SI14	SI05	SI15	SI06	SI16	SI07	SI17
工具IO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	SO00	SO10	SO01	SO11	SO02	SO12	SO03	SO13	SO04	SO14	SO05	SO15	SO06	SO16	SO07	SO17
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	内部IO															
	CI00	0	CI01	0	CI02	0	CI03	0	CI10	0	CI11	0	CI12	0	CI13	0
	CO00	0	CO01	0	CO02	0	CO03	0	CO10	0	CO11	0	CO12	0	CO13	0
	联动IO															
	LIOO	0	LI01	0	LI02	0	LI03	0	LI04	0	LI05	0				
	LO00	0	LO01	0	LO02	0	LO03	0								
机械臂																
系统																

図 10-24 コントローラ I/O 設定

セキュリティ I/O: すべてのセキュリティ I/O はデュアルチャネルであり、冗長 構成を維持することで、単一の障害がセキュリティ機能の障害を起こさないよう にすることができる。(I/O 定義参照 8.5.3 セキュリティ I/O 機能定義)

内部 I/O: 内部機能インタフェースのために、コントローラ内部インタフェース ボードの I/O 状態表示を提供し、ユーザーに開放しない。(I/O 定義参照 8.3)

連動 I/O: アームは、この I/O インタフェースを介して外部の1台または複数の 機器(アームなど)と通信することができ、共同運動を行うことができる。(I/ O 定義参照 7.4.2 連動モード)

10.3.2 ユーザ I/O

			机械臂示教	牧 在线编程 议	置 扩展	系统信息 关于			
IO状态					用户IO	犬态			
	DI	F1	0	F2	0	F3	0	F4	0
Controller IO		F5	0	F6	0	U_DI_00	0	U_DI_01	0
用户IO		U_DI_02	0	U_DI_03	0	U_DI_04	0	U_DI_05	0
TRIO		U_DI_06	0	U_DI_07	0	U_DI_10	0	U_DI_11	0
		U_DI_12	0	U_DI_13	0	U_DI_14	0	U_DI_15	0
		U_DI_16	0	U_DI_17	0				
	DO	U_DO_00	0	U_DO_01	0	U_DO_02	0	U_DO_03	0
		U_DO_04	0	U_DO_05	0	U_DO_06	0	U_DO_07	0
		U_DO_10	0	U_DO_11	0	U_DO_12	0	U_DO_13	0
		U_DO_14	0	U_DO_15	0	U_DO_16	0	U_DO_17	0
	AI	VI0		0	VI1	0	١	/12	0
		VI3		0					
	AO	CO0		0	CO1	0	V	00	0
		VO1		0					
机械臂									
系统	输出	们O控制 AC	_name	0.0		发送			

図 10-25 ユーザ I/O 設定

DI と DO は汎用デジタル I/O で、16 ウェイ入力と 16 ウェイ出力があり、リレー などの電気機器を直接駆動することができる。

F1-F5: IO 信号を保持するために、現在はユーザーに開放されていません。

F6: アラーム信号をクリアするために、ローレベルが有効です。

アナログ入力は収集したセンサの電圧値を表示するために用いられ、4つのアナログ入力信号があり、それぞれ: VI0、VI1、VI2と VI3、範囲はすべて0V~+10 Vで、精度は±1%である。

アナログ出力は、インターフェースボード出力の電圧/電流値を表示するために 使用されます。4 つのアナログ出力信号がある:それぞれ VO 0、VO 1、CO 0、 CO 1 であり、そのうち VO 0、VO 1 出力電圧、CO 0、CO 1 出力電流である。

出力 IO 制御: 状態を変更する必要がある IO を選択し、テキストボックスに対応する数値を入力します。ここで DO は low と high の 2 種類の状態があり、AO 中の電圧出力範囲は 0 V ~+10 V、電流出力範囲は 0 mA ~ 20 mA (4 mA ~ 20 mA 電流値の入力を推奨)、IO 名を選択し、送信ボタンをクリックして、対応する IO は設定値に設定されます。

10.3.3 ツール端 I/O

IO状态	机械臂示教在线	线编程 设置	扩展 系统信息 关 工具IO状态	专		
Controller IO 用户IO		Pin 1/2 配置 电源	DC 0V	~		
工具IO		Pin 5/7/3/4	尼置			
		T_DI/O_00	Digital Input	v	OFF	
	456	T_DI/O_01	Digital Input	v	OFF	
	3 2 7 1 T	T_DI/O_02	Digital Input	~	OFF	
	GND 1	T_DI/O_03	Digital Input	v	OFF	
	12/24 V 2 T DI/O 00 5					
	T_DI/O_01 7	Pin 8/6 配置				
	T_DI/O_02 3	T_AI_00	0.0 V			
	T_DI/O_03 4	T_AI_01	0.0 V			
	T_AI_00 8					
机械臂系统						

図 10-26 ツール端 I/O 設定

ツール側 I/O 設定: エンドツールの I/O 設定状態表示。ユーザーはピン 3/4/5/7 を 通じて 4 ウェイデジタル I/O を配置することができ、ピン 6/8 はアナログ入力と して配置することができ、アナログ電圧出力範囲は 0-10 V で、ピン 2 は 0 V、12 V と 24 V の 3 種類の電圧出力を配置することができる。

ユーザーはこの機能を使用する前に、実際の使用状況に応じてピン 2 の電圧と ピン 3/4/5/7 の状態を設定しておく必要がある。ピン 2 の電圧出力を使用するた びに、ピン 2 の電圧を再配置することをお勧めします。

10.4 ロボットシステムのインストール設定

10.4.1 初期ビット姿勢標定

初期姿勢を選択

固定点を設定するには、ロボットティーチングインタフェースを操作したり、ティーチングをドラッグしたりすることでアームを移動させ、ロボットの初期位置 を設定し、設定が完了するとティーチングインタフェースの下の初期姿勢に同期 することができる。

パッケージ姿勢の選択

クリックしてここまで運動すると、アームをパッケージング姿勢に動かすこと ができ、後続のパッケージング処理に便利で、固定点を設定することでアームの パッケージング姿勢を変更することができる。

初期位置を選択するために設定する必要がある IO

ドロップダウンメニューから DO を選択し、high をチェックして IO を保存する をクリックします。アームが初期位置に移動すると、選択した DO が信号出力さ れます。

関節閾値を入力し、IO を保存するをクリックすると、設定した初期位置に到達 したときの DO が設定した閾値に基づいて信号を出力します。

10.4.2 ツールの定格

ツールキャリブレーションには、ツールキネマティックキャリブレーションと ツールキネマティックキャリブレーションの2つのセクションがある。1つのツ ールは、キネマティックアトリビュート(コンストレイントツールの終端軌道運 動)とダイナミクスアトリビュート(コンストレイントアームに荷重がある場合 の速度加速度などのダイナミクスパラメータ)から構成されています。ツールの ラベル付けは3つのラベル付けインタフェースに分けられ、それぞれツールの ラベル付け、ツールキネマティックのラベル付け、ツールキネマティックのラベ ル付けである。ツールのキネマティックパラメータとダイナミクスパラメータを ラベル付けしてから、ツールのラベル付けインタフェースに入り、ツールのキネ マティックプロパティとダイナミクスプロパティを選択し、ツール名を入力して からツールを追加します。

インタフェースに含まれる記号の意味:

- ▶ 下標't'と'b'はそれぞれツール座標系と基本座標系を表し、
- F、X、Y、Zはそれぞれ座標系、X軸、Y軸、Z軸を表す

ツールを指定する手順は、次のとおりです。

- キネマティックロケール-ツールパラメータを決定します。
- キネマティックパラメータ設定-キネマティックによってパラメータをラベル付けしたり、独自にパラメータを設定したりできる。
- ▶ 動力学の定格-負荷とツールの重心パラメータの設定、
- ▶ ツールの定格。

キネマティックひょうてい

図 10-28 キネマティックツールの定格

ツールキネマティックロケールには、位置ロケーションと姿勢ロケールがある。

ツールキネマティックパラメータを指定する前に、アームにツールが取り付け られていることを確認してください。位置標定点を決定してから、姿勢標定点を 決定することをお勧めします。

位置と姿勢の特定の操作手順は次のとおりです。

- ▶ ティーチングインタフェース上のメニューバーの設定をクリックして、ツー ルバーのツールのラベル付けをクリックして、メニューバーのキネマティッ クのラベル付け-キネマティックのラベル付けの下のキネマティックのラベ ル付けをクリックします。上図のように。
- ▶ 位置標定を行い、標識点タイプを位置標識点として選択し、追加をクリック し、教示インタフェースで運動制御または教示をドラッグして最初の位置点 を決定し、同様に方法は残りの3つ以上の位置標識点を決定する。
- ▶ 姿勢標定を行い、参考点のある xOxy を例に、まず姿勢標定方法におけるド ロップダウンメニューを通じて姿勢標定方法 xOxy を選択する、さらに、姿 勢標定点の下にある参照点ドロップダウンメニューから任意の位置標定点 を参照点として選択します。定点タイプ姿勢定点を選択し、追加をクリック し、ティーチングインタフェースで運動制御またはティーチングを行って最 初の姿勢点を決定する、同じ方法で2番目の姿勢点を指定します。
- 定格モードのオプションをチェックして、この時定格ボタンを使用して、定 格をクリックして、キネマティックパラメータインタフェースに切り替えま す。ツールキネマティックの名前を入力し、追加ボタンをクリックしてツー

エラー![ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。エラー![ホ ーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

V4.5.11

ルキネマティックのラベルを追加します。このインタフェースでは、ツール キネマティックパラメータの手動入力もサポートされています。パラメータ を手動で入力したら、「保存パラメータの追加」をクリックします。

いちひょうてい

位置パラメータを指定するには、4つの点以上の点が必要です。

注: ツールの末端位置を満たすために4つ以上の点を選択することは必須です。 すべての位置標定点は、アームベース標識系に対する工具終端位置の位置を一定 にする必要がある(理想的には、すべての道路点に対応するフランジ中心は工具 の真の終端を球面とする)、そうでないと位置標定誤差を引き起こす可能性があ る。

姿勢定格

姿勢パラメータを定格するには、2つのパスポイント(基準点を除く)しか必要 ありません。

姿勢のラベル付けはオプションで、姿勢をラベル付けしないとツール姿勢はフ ランジ姿勢と同じになります。位置を参照する必要があるかどうか(すなわち、 4+個の位置標定点のうちのある点)に応じて、姿勢標定は2種類の計6種類の 標定方法に分けられる:

第1類:参考点のある標定方法は xOxy、yOyz、zOzx を含み、xOxy を例に、参 考位置をツール末端座標系の原点とする、原点と最初の姿勢で点を標定して形成 された光線を Xt 正半軸とし、原点と 2 番目の姿勢で点を標定して形成されたベ クトルは xOy 平面内にあり、そのベクトルと Yt 正半軸の角度は鋭角である(角 度はできるだけ 90 度に近づかないように注意する)。

第2のクラス:参照点を持たない defaults 方法は TxRBz _TxyPBzAndTyABnz、 TyRBz_TyzPBzAndTzABnz、TzRBz_TzxPBzAndTxABnz は、第1のクラスの限定 されない標識点の姿勢と異なる点は、2つの標識点のツールのいずれかの軸の正 半軸が Zt と平行に反転しなければならないこと、操作手順と第1クラスの指定 の違いは、参照点を選択しないことだけです (参照点ドロップダウンオプション がグレーの場合)。

6種類の姿勢標定方法の標定点要求はそれぞれ以下の通りである:

図 10-29 xOxy

上図は xOxy タイプで、参照点は原点であり、標定された最初の点は X(t 正半軸 上の任意の点であり、標定された 2 番目の点は Ftの xOy 平面の第 1 象限内の任 意の点である。

図 10-30 yOyz

上図は yOyz タイプであり、基準点は原点であり、標定された最初の点は Y($_t$ の 正半軸上の任意の点であり、標定された 2 番目の点は F $_t$ の yOz 平面の第 1 象限 内の任意の点である。

上図は zOzx タイプであり、参照点は原点であり、標定された最初の点は Z(to) 正半軸上の任意の点であり、標定された 2 番目の点は F_t の zOx 平面の第 1 象限 内の任意の点である。

図 10-32 TxRBz_TxyPBzAndTyABnz

上図は TxRBz _TxyPBzAndTyABnz タイプで、標定された最初の点は $X(_{L_b}$ が平行であるが方向が反対であることを満たし、スカラされた 2 番目の点は、 F_t の xOy 平面が Z_b に平行であり、 Z_b の負方向ベクトルが $F(_txOy$ 平面に投影され、 Y_t の角度が鋭角であることを満たす。

図 10-33 TyRBz_TyzPBzAndTzABnz

上図は TyRBz_TyzPBzAndTzABnz タイプで、標定された最初の点は Y($_{tZb}$ が平行 であるが方向が反対であることを満たし、スカラされた 2 番目の点は、 F_{t} の yOz 平面が Z_bに平行であり、Z_bの負方向ベクトルが F($_{ty}$ Oz 平面に投影され、Z_bの角 度が鋭角であることを満たす。

図 10-34 TzRBz_TzxPBzAndTxABnz

上図は TzRBz _TzxPBzAndTxABnz タイプで、標定された最初の点は $Z(_{t}Z_{b}$ が平行であるが方向が反対であることを満たし、スカラされた 2 番目の点は、 F_{t} の zOx 平面が Z_{b} に平行であり、 Z_{b} の負方向ベクトルが $F(_{t}zOx$ 平面に投影され、 Z_{t} の角度が鋭角であることを満たす。

キネマティックパラメータの設定

図 10-35 キネマティックパラメータ

キネマティックパラメータは、手首 3 のツール端に対して取り付けられたツー ルの距離パラメータと姿勢パラメータである。

運動学的に定格されたツールの終端位置パラメータと姿勢パラメータを指定す ることで、左下隅のデータ表示領域に自動的に追加されます。キネマティック名 を入力し、追加ボタンをクリックするとツールキネマティック名が追加されます。

ツールキネマティックパラメータを変更する場合は、ツールキネマティックパ ラメータを追加するプロセスと同様に、ポイントを指定してパラメータを指定す ることも、直接手動でパラメータを入力することもできる。パラメータを設定し たら、上図の右側のリストで修正するキネマティックパラメータを選択し、修正 ボタンをクリックして修正を完了します。

ツールキネマティックパラメータを削除する場合は、削除するキネマティック 名をリストから選択し、削除ボタンをクリックして削除を完了します。

注意:動的パラメータの flange _センターオプションはシステムのデフォルトパ ラメータであり、変更や削除はできません。

ダイナミックスケール

図 10-36 ツールダイナミクスの定格

- ツールダイナミクス名、ツールロード、ツール重心パラメータを入力し、追加をクリックするとツールダイナミクスの定格が完了します。
- ツールのダイナミクスパラメータを変更する場合は、まず修正する項目を選択し、修正する数値を入力し、修正ボタンをクリックして修正を完了します。
- ツールダイナミクスパラメータを削除する場合は、修正する項目を選択し、 削除ボタンをクリックして削除を完了します。
- 注: flange_センターオプションはシステムのデフォルトパラメータであり、
 変更や削除はできません。

ツールの定格

		机械臂示教	在线编程 设置 扩展 系	系统信息 关于		
IO状态			工具标定运动学标定	动力学标定		
机械臂	工具名	3称	运动学名和	尔	动力学名和	ه
1714/14:17	flange_o	center	flange_cen	ter	flange_cent	ter
初始位安						
工具标定						
坐标系标定						
安全配置						
		(
	工具名称	flange_center				
	运动学名称	flange_center	~			
	末端位置X(m)	0.000000	末端位置Y(m)	0.000000	末端位置Z(m)	0.000000
	末端姿态RX(deg)	0.000000	末端姿态RY(deg)	0.000000	末端姿态RZ(deg)	0.000000
	动力学名称	flange_center	•			
	负载	0.00				
	重心X(m)	0.000000	重心Y(m)	0.000000	重心Z(m)	0.000000
系统		添加	Modify		删除	

図 10-37 ツールの定格

ツールはツールキネマティックとダイナミクスの組み合わせとして指定されて います。ツールキネマティックとダイナミクスパラメータのラベル付けが完了し たら、このインタフェースに入り、ツール名を入力し、ドロップダウンリストか らツールキネマティックとダイナミクス名を選択し、追加ボタンをクリックして ツールパラメータを保存します。

ツールの標準時を変更し、リスト内で変更する必要がある項目を選択して、ツー ル名、ダイナミクス名、キネマティック名を変更します。修正ボタンをクリック して、修正を完了します。

ツールの標準時を削除し、変更する項目を選択し、削除ボタンをクリックして削 除を完了します。

注意したいのは、flange _センターオプションはシステムのデフォルトオプションであり、変更や削除はできません。

10.4.3 座標系標定

図 10-38 ざひょうけいひょうてい

標定するときは、まず標定された座標系のタイプを決定し、座標系の標定方法の 右側のドロップダウンメニューで必要な座標系のタイプを選択します。次に、標 定方法を選択し、Point 1を選択し、設定ポイントをクリックして、ティーチング インタフェースに入り、座標系の原点を標定します。Point 2 と Point 3 を同じ方 法で表記します。座標系名を入力し、追加ボタンをクリックして座標系パラメー 夕を保存します。

- 座標系を変更する場合は、リストでその座標系を選択し、変更をクリックして Point 1 から Point 3 を変更することができる。
- 座標系名も修正でき、設定ができたら、修正ボタンをクリックして修正パラ メータを保存します。
- 座標系を削除する場合は、リストで座標系を選択し、削除ボタンをクリックして座標系を削除します。
- クリアボタン機能は、ラベル付けされた Point 1 から Point 3 のラベル付け結 果をクリアするものです。
- 表示モード機能は、標定された座標系の3つの経路点の数値を表示し、リストで1つの座標系を選択すると、自動的に表示モードに入り、Point1からPoint3をクリックすると、シミュレーションインタフェースにその座標系を標定する際に使用される3つの経路点が表示されます。
- ここに移動する機能は、キャリブレーションモードで Point 1 から Point 3 の いずれかのボタンを選択し、ここに移動すると対応するキャリブレーション

文字列に 标题 2 を適用してください。エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

ポイントに移動します。表示モードでは、Point 1 から Point 3 のいずれかの ボタンを選択し、ここに移動すると座標系を標定するときに使用するポイン トに移動します。

座標系の定格方法

座標系のタイプ命名規則と各座標系の指定点は次のように要求されます。

図 10-39 xOy

上図は xOy タイプで、標定された最初の点は座標系原点であり、2 番目の点は X 軸の正半軸上の任意の点であり、3 番目の点は Y 軸の正半軸上の任意の点であり、3 点が形成した角は直角であることが要求されている。

図 10-40 yOz

上図は yOz タイプで、標定された最初の点は座標系原点であり、2 番目の点は Y 軸の正半軸上の任意の点であり、3 番目の点は Z 軸の正半軸上の任意の点であり、3 点が形成した角は直角であることが要求されている。

エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。エラー! [ホ ーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

V4.5.11

図 10-41 zOx

上図は zOx タイプで、標定された最初の点は座標系原点であり、2 番目の点は Z 軸の正半軸上の任意の点であり、3 番目の点は X 軸の正半軸上の任意の点であり、3 点が形成した角は直角であることが要求されている。

図 10-42 xOxy

上図は xOxy タイプで、標定された最初の点は座標系原点であり、2 番目の点は X 軸の正半軸上の任意の点であり、3 番目の点は xOy 平面の第1 象限内の任意の 点であり、3 点が形成した挟み角は鋭角であることが要求されている。

上図は xOxz タイプで、標定された最初の点は座標系原点であり、2 番目の点は X 軸の正半軸上の任意の点であり、3 番目の点は xOz 平面の第1 象限内の任意の

点であり、3点が形成した挟み角は鋭角であることが要求されている。

図 10-44 yOyz

上図は yOyz タイプで、標定された最初の点は座標系原点であり、2 番目の点は Y 軸の正半軸上の任意の点であり、3 番目の点は yOz 平面の第1 象限内の任意の 点であり、3 点が形成した挟み角は鋭角であることが要求されている。

図 10-45 yOyx

上図は yOyx タイプで、標定された最初の点は座標系原点であり、2 番目の点は Y 軸の正半軸上の任意の点であり、3 番目の点は yOx 平面の第1 象限内の任意の 点であり、3 点が形成した挟み角は鋭角であることが要求されている。

図 10-46 zOzx

エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。エラー! [ホ ーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

V4.5.11

上図は zOzx タイプで、標定された最初の点は座標系原点であり、2 番目の点は Z軸の正半軸上の任意の点であり、3番目の点は zOx 平面の第1象限内の任意の 点であり、3点が形成した挟み角は鋭角であることが要求されている。

図 10-47 zOzy

上図は zOzy タイプで、標定された最初の点は座標系原点であり、2 番目の点は Z 軸の正半軸上の任意の点であり、3 番目の点は zOy 平面の第1 象限内の任意の 点であり、3点が形成した挟み角は鋭角であることが要求されている。

10.5 アームの安全構成

セキュリティ構成インタフェースは、admin ユーザーログインの下でのみ変更で きる。

10.5.1 基本構成

IO状态	机械臂示教 在线编程 设置 扩展 系统信息 关于 安全配置 基础条件 缩减模式 关节限制
机械臂 固定位姿 工具标定	碰撞 碰撞等级 6 ▼ 碰撞模式 Free ▼
安全配置	安全配置 运动限制初值 100% 非停止状态下使能力控
	重置防护停止 ● 手动重置 自动重置
	操作模式 ● 常规模式 验证模式
系统	保存
	〒 10 49

図 10-48

しょうとつレベル

衝突等級は安全等級に設定され、1~10の安全等級があり、等級が高いほど、ア ームの衝突検出後に停止するために必要な力が小さく、第6級はデフォルト等 級である。

衝突モード

Free は衝突が発生した後、アームがドラッグティーチングモードに入ることを 示し、Stuck は衝突が発生した後、アームは現在の位置を維持し、ドラッグされ ないことを示します。

運動制限の初期値

運動制限の初期値は、工事の運行速度の制限であり、オンラインプログラミング に対応する 11.1 概要 4 運動制限。この構成が完了すると、ソフトウェアを再起 動すると有効になり、オンラインプログラミングインタフェースの動き制限がこ この設定値として表示されます。

注: この構成は、ソフトウェアを起動した後に1度だけ有効に初期化されます。 その後、運動制限を変更すると、変更後の運動制限に準拠します。

非停止状態での能力制御

ティーチング有効化スイッチをドラッグし、チェックすると、アームが一時停止 したり、衝突したり、保護性停止が発生したりした後、手動信号または外部 IO (SI 06/SI 16) でアームをドラッグティーチングモードにすることができる。

保護停止のリセット

「手動リセット」を選択した場合、防護停止信号は無効であり、防護リセット外 部入力信号が有効であれば保護を解除することができる、「自動リセット」を選 択した場合、外部入力防護リセット入力信号を無視し、防護停止信号が無効な場 合、自動的に保護を解除する。

動作モード構成

「通常モード」を選択した場合、外部の3 状態スイッチ入力信号は無視されま す。「検証モード」を選択した場合、外部三種スイッチ入力信号は有効です。

10.5.2 縮小モード

このモードが活性化されると、関節空間におけるアームの運動速度が制限され、 該当するテキストボックスの数値は各関節の運動速度の限界値であり、その中の 1、2、3 関節の設定範囲は 1~150°/s、4、5、6 関節の設定範囲は 1~180°/s、アー ムのデカルト空間での運動速度限界は TCP 速度制限値であり、設定範囲は 1~ 2800 mm/s である。

エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。エラー! [ホ ーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

_				V4.5.11
S AUBO		Admin		80
	机械臂示教在线	编程设置扩展系统(言息 关于	
IO状态		安全配置 基础条件 缩减模式 5	关节限制	
机械管	关节1	15	°/s (1~150)	
固定位姿	关节2	15	°/s (1~150)	
工具标定	关节3	15	°/s (1~150)	
坐标系标定	关节4	15	°/s (1~180)	
安全配置	关节5	15	°/s (1~180)	
	关节6	15	°/s (1~180)	
	TCP速度限制	160	mm/s (1~2800)	
系统		保存		
零位姿态初始位多	姿 0.00 2	2020-03-16 10:42:45	速度	50%

図 10-49

10.5.3 ジョイント制限

ジョイント制限はジョイントが到達できる最大制限にデフォルト設定され、ユ ーザーはここでアームの動作時のジョイントの角度を制限できる。設定した角度 が実際のアームの実際の角度範囲外に制限されている場合、テキストボックスの 値は自動的にデフォルト設定に戻ります。アームが設定された関節角度の外で動 作するように、アームは動きを停止し、警告情報をポップアップします。この場 合、有効化関節制限を再調整する必要がある。角度が大きすぎるとアームの電源 が切れ、回復すると関節制限はデフォルト値に戻り、ユーザーが適切な位置にア ームを移動した後、関節制限をやり直す必要がある。

Саиво		admin				R	0
	机械臂示教 在	线编程 设置	扩	展系统信	息 关于		
IO状态			安	全配置			
机械管		基础条件	缩	减模式关	节限制		
	✓ 使創	关节限制					
固定位姿	关节1	-174.9]~	174.9	°[-359.9, 359.9]		
工具标定	关节2	-174.9]~	174.9	°[-174.9, 174.9]		
坐标系标定	关节3	-174.9]~	174.9	°[-174.9, 174.9]		
安全配置	关节4	-174.9]~	174.9	°[-174.9, 174.9]		
	关节5	-174.9	-	174.9	°[-174.9, 174.9]		
	关节6	-174.9]~	174.9	°[-359.9, 359.9]		
		L)				
系统				保存			
		図 10-	50				

10.6 ロボットシステム設定

10.6.1 言語設定

	机械臂示教	在线编程设	置扩展	系统信息	关于
IO状态			语클	Ī	
		简体中	文		~
机械臂		British	English		
系统		简体中实	Ż		
· 本		繁體中	文 文		
		čeština			
日期时间		Deutsc	h		
网络		français	5		
		italiano			
密码		日本語			
系统		한국어			
更新			=+		

図 10-51 言語設定

言語設定ユニットは現在、英語、中国語(簡体字&繁体字)、チェコ語、ドイツ 語、フランス語、イタリア語、日本語、韓国語の設定を提供している。

10.6.2 日付時刻設定

図 10-52 日付時刻設定

時刻設定手段は、システムの日時を設定することができる。

10.6.3 ネットワーク設定

	1000月小秋 11-24時日 2日 17 夜 小500日本 入1 网络	
	网络配置 网卡 推码	
=	IP地址 网关	
a	取消保存重置	
	网络调试 192 168 100 1 ifconfin Server Status 法除 。	
		可以旧忌

図 10-53 ネットワーク設定

ネットワーク設定ユニットは、サードパーティインタフェース制御のネットワ ーク設定に使用されます。

このインタフェースでは、指定された NIC 名とその IP アドレス、サブネットマ スク、デフォルトゲートウェイを構成できる。サードパーティインタフェースの ネットワーク IP アドレスは、ネイティブの IP アドレスと同じセグメントにある 必要がある。

ネットワークデバッグインタフェースでは、ユーザーは ping を通じて外部デバ イスと ping が通じるかどうかを見ることができ、ifconfig を通じてネットワーク カード情報を見ることができ、server status を通じてアームサーバポート番号が 傍受状態にあるかどうかを見ることができる。

10.6.4 パスワード設定

机械臂	示教 在线编程 设置 扩展 系统信息 关于	
IO状态	2010	
机械臂	当前密码 请输入当前密码	
系统	新密码 新密码应该小于16个字符	
·语言	输认密码 确认密码	
日期时间		
网络	取消 确认	
密码		
锁屏		
更新		

図 10-54 パスワード設定

パスワード設定部は、ここでユーザーパスワードを設定できる(デフォルトパス ワードは1)。 エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。エラー! [ホ ーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

V4.5.11

現在のパスワード、新しいパスワード、新しいパスワードを入力し、確認をクリックしてパスワードを変更します。適切なパスワードを入力してこそ、ユーザーはティーチを使用できる。

このインタフェースは、現在ログインしているユーザーパスワードのみを変更します。

パスワードが設定されたら、再ログインする必要がある。

10.6.5 その他の設定

	机械臂示教 在线编程 设置 扩展 系统信息 关于
IO状态	系统
机械臂	✓ 显示行号
系统	✓ 锁屏时间(s)
语言	允许外部读写保持型变量
日期时间	允许外部读写POSE型变量
网络	屏幕校准
密码	
系统	
更新	

図 10-55 座標系保持、行番号表示、ロック画面時間設定

行番号を表示

ライン番号の表示をチェックし、オンラインプログラミングインタフェースに 切り替えると、プログラムロジックにプログラムのライン番号が表示されます。

スクリーンロック時間

スクリーンロック時間をチェックし、テキストボックスにスクリーンロックを 計画する時間(単位: s)を入力して、スクリーンロックの時間を更新します。 デフォルトのスクリーンロック時間は 500 s です。

外部読み書きを許可する保持型変数

外部読み書きを許可する保持型変数をチェックし、外部プラグインを通じて保 持型変数を読み書きすることができ、プラグインはユーザー自身が作成し、アフ ターサービスに連絡してプラグインの作成例を提供することができる。

外部読み書き POSE 型変数

外部読み書きを許可する POSE 型変数をチェックし、外部プラグインを通じて 保持型変数を読み書きすることができ、プラグインはユーザー自身が作成し、ア フターサービスに連絡してプラグインの作成例を提供することができる。
10.6.6 更新する

更新インタフェースは、工場出荷時の設定、ソフトウェア/ファームウェアの更 新、ファイルのエクスポートを復元することができる。更新インタフェースは、 admin ユーザーログインの下でのみ変更できる。

出荷時設定の復元

AUBO	admin	8, O
IO状态	机械臂示教 在线编程 设置 扩展 系统信息 关于 软件更新	
机械臂	恢复出厂设置更新软件更新固件文件导出 File Import	
系统 语言		$\hat{\mathbf{n}}$
日期时间 网络	恢复出厂设置	
密码		
^东 筑 更新	更新包列表	
2.41		

図 10-56 出荷時設定の復元

出荷時の状態を復元するには、出荷時の設定を復元するをクリックします。ユー ザーパスワードは初期パスワード [1] に戻り、ロック時間は初期ロック時間 [500 秒」に戻ります。注: ソフトウェアユーザー構成のデータは消去されます。この 機能は慎重に使用してください。

ソフトウェア/ファームウェアの更新

Каиво	admin	8 O
	机械臂示教 在线编程 设置 扩展 系统信息 关于	
IO状态	软件更新	
机械臂	Wgm/ 设置 Umm/开 更新面件 文件导面 File Import	
系统		
语言	扫描软件安装包	
日期时间		
网络	要新软件	
密码		
系统		
更新	更新包列表	

図 10-57 ソフトウェア/ファームウェアの更新

更新ソフトウェアは AUBOPE ソフトウェアをアップグレードするために使用さ れ、プログラム名は AuboProgramUpdate で始まり、ファームウェアインストール パッケージはインターフェースボードプログラムソフトウェアをアップグレー ドするために使用され、プログラム名は InterfaceBoard で始まる。

ソフトウェア/ファームウェア更新操作手順は、上の図に示すインタフェースの ソフトウェア/ファームウェア更新ボタンを押すと、USB ストレージデバイスを 挿入し、スキャンソフトウェアインストールパッケージ/スキャンファームウェ アインストールパッケージをクリックし、更新パッケージリストで更新が必要な ソフトウェア/ファームウェアを識別したら、そのソフトウェア名のエントリを クリックし、更新ソフトウェア/更新ファームウェアをクリックします。

- ▶ ファイルディレクトリ名は英字でのみ使用できる。
- 更新されたソフトウェア/ファームウェアはルートディレクトリの下にしか 配置できません。
- 更新されるソフトウェア/ファームウェアは、.auboで終わる圧縮ファイルで なければなりません。

プロジェクトファイルとログのエクスポート

Каиво		admin	8 O
	机械	霄示教 在线编程 设置 扩展 系统信息 关于	
IO状态	恢复出厂设置	软件更新 更新软件 更新因性 文件导出 File Import	
机械臂	MQUI KE		
系统			
语言	扫描设备		
日期时间			
网络	文件导出		
密码			
系统	В	0%	
更新		更新包列表	

図 10-58 プロジェクトファイルとログのエクスポート

USB ストレージデバイスを挿入し、スキャンデバイスをクリックし、ストレー ジデバイスが認識されたら、ファイルをクリックしてエクスポートし、対応する ログファイルまたはエンジニアリングファイルを USB ストレージデバイスに導 入します。

プロジェクトファイルのインポート

Каиво		admin	8 O
18-12	机械	臂示教 在线编程 设置 扩展 系统信息 关于	
IO状态	恢复出厂设备	软件更新 更新软件 更新因性 文件导出 File Import	
机械臂	Kgul QE		
系统			
语言	Scan Aubo File		
日期时间			
网络	File Import		
密码			
系统		0%	
更新	(更新包列表	

図 10-59 プロジェクトファイルのインポート

USB ストレージを挿入し、スキャンデバイス (Scan Aubo File) をクリックし、 ストレージデバイスが認識されると、テキストボックスにインポート可能なファ イルが表示され、インポートするファイル名を選択し、ファイルエクスポート (File Import) をクリックして、該当するログファイルまたはエンジニアリング ファイルを USB ストレージデバイスにインポートします。

10.7 拡張モジュール

アーム教示プラグインコネクタ。サードパーティの開発者が自分のニーズに合わせてティーチソフトウェア機能を拡張できるようにすることで、ソフトウェアは無限に拡張できるようになります。例:

- ▶ ティーチペンダントソフトウェアに PickIt 3 D カメラデバイスを追加する、
- ➢ SICK 2 D カメラデバイスをティーチングソフトウェアに追加する、
- ▶ ティーチングソフトウェアに Modbus デバイスを追加します。
- パレタイジングプロセスパッケージ。
- 一部の拡張機能の使用説明 about インタフェースでは、他のモジュール機能の説明は個別の使用説明文書を参照する必要がある。

10.7.1 Modbus プラグイン

		机械	臂示教 在线	编程设置	「展 系统	信息 关	Ŧ			
heral			l.	设备配置 IOm	習置 10状	态	制			
a	名称模	式 从站	响应时间	频率	设备	波特率	校验位	数据位	停止位	ļ
	nbmotor RT	U 1	100	50 /	dev/ttyS2	9600	NONE	8	1	
			17							
		-								
			2			2 1				
	1		2			· · · · ·				
	0			111)	
		名称 nl	bmotor		相	莫式	RTU	🔘 тс	P	
	从站(0~FFFF)	1		响应时间	1	100 n	าร	频率		50 H
	设备	/dev/ttyS3	•	波特率	9600		-	校验位	NONE	
	粉课台	/dev/ttyS0		信止が	1		<u> </u>			
_	\$X1/2	/dev/ttyS1	_	17TI-21				_		
	1	¹ /dev/ttyS2	-	添加	c	修改			删除	
<u>ئە</u>	初始位姿	/dev/ttyS3				_	速度			

図 10-60 Modbus デバイスの構成

Modbusデバイスを接続する手順は次のとおりです。

- Modbus デバイスとコントロールボックス通信インタフェースを接続し、一般的には、RTU モードは USB または ModbusRTU を介して接続し、TCP モードはイーサネットを介して接続する(インタフェース位置は「8.3 コントロールボックス通信インタフェース)。
- デバイス構成インタフェースにカスタムデバイス名を追加し、デバイスの状況に応じて RTU または TCP モードを選択し、デバイスはドロップダウンメニューの S2 を選択し、その他の基本情報の記入は追加デバイスのパラメータ説明書を参照する必要がある。一般的には、説明書から次の情報を取得する必要がある。
- テーブル 29Modbus デバイス構成に必要な情報

RTU	ТСР
スレーブステー	
ション(0-	スレーブステー
FFF)	ション(0-
レスポンス時間	FFF)
しゅうはすう	レスポンス時間
ボーレート	しゅうはすう
けんさビット	IP
データビット	ポート番号
ストップビット	

エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。エラー! [ホ ーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

V4.5.11

- 接続をクリックすると、接続が成功したかどうかを示すメッセージが表示されます。
- ▶ IO 構成インタフェースにデバイスの IO パラメータ情報を設定します。
- IO 状態インタフェースに IO 状態を表示し、出力 IO 状態構成を行うことが できる。
- IO 制御インタフェースでは、IO 構成インタフェースに設定された IO を信 号制御することができる。

デバイス構成

- デバイス名選択プルダウンメニューのS2
- パラメータ設定が完了したら「追加」をクリックすると、ティーチングリストに基本パラメータ情報が表示されます。
- リスト内のエントリを選択し、対応するパラメータを変更したら、「変更」 をクリックして、対応するエントリパラメータを変更します。
- Delete をクリックして削除すると、リスト内のエントリを削除できる。
- RTU モード

名称に設備名(カスタム)を記入し、モード選択 RTU モード、スレーブステー ション(0-FFF)、応答時間、周波数、設備対応説明書に情報を記入し、設備選択 ドロップダウンメニューのS2、ボーレート、検査ビット、データビット、停止 ビットは対応説明書の情報に基づいて選択する。終了したら追加をクリックして、

TCP モード

名称に設備名(カスタム)を記入し、モード選択 RTU モード、スレーブステー ション(0-FFF)、応答時間、周波数、設備対応説明書に記載された情報に基づい て記入し、IP アドレスとポート番号はすべて設備自身が設定した時の具体的な パラメータである。ユーザは、デバイスに対応する説明書に基づいて、上記パラ メータを取得および配置することができる。

この場合、ティーチングマシンネットワークの IP アドレスを構成する必要がある(具体的な構成方法は、10.6.3 ネットワーク設定)。

ティーチングパネルメニューの設定ツールバーをクリックしてシステム-ネット ワークを選択し、対応するネットワークカードを選択し、IP アドレスを Modbus デバイス IP アドレスに記入する (ティーチングネットワーク設定中の IP アドレ スの最後のビットは Modbus デバイス IP アドレスの最後のビットと異なる必要 があることに注意する)、マスクとゲートウェイは Modbus デバイスパラメータ と同じである。

IO 構成

▶ 対応する Modbus 名を選択し、アドレスタイプを選択し、IO 名はカスタマ イズでき、アドレス (0-FFF) はデバイス構成処アドレス (0-FFF) と同じで ある。

Modbus 機能コードは標準プロトコルを採用する

テーブル 30Modbus の一般的な機能コードの概要

ファンクシ	機能
ョンコード	
01H	リードコイル状態
02H	リードディスクリート
	入力状態
03H	リードホールドレジス
	タ
04H	リード入力レジスタ
05H	書き込みコイル
06H	ライトシングルホール
	ドレジスタ
0FH	書き込みコイル
10H	ライト複数保持レジス
	タ

IO 状態

IO 状態インタフェースは、IO 構成における DI および DO 状態を観測すること ができる。

10 制御

IO 制御インタフェースは IO 構成中の出力 IO を状態制御することができ、この インタフェースには 2 つの構成方法があり、構成が必要な出力 IO を選択し、 LOW または HIGH を選択し、送信をクリックするか、構成が必要な出力 IO を 選択し、送信0をクリックして1を送信し、送信0を送信して無効信号を表し、 送信1を送信して有効信号を送信する。

10.8 システム情報

システム情報には、アームの電源状態、温度が低い場合、関節状態、ログなどの 関連情報が表示されます。

エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。エラー! [ホ ーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

V	Δ		5		1	1	
۰	т	٠	~	٠	1	1	

_	0				1 (C.C.)	
机械帽	an mile th			0100 M 10-02		
	10.19-07-22		大力状态			
	48V电源	ON	关节1	48.15 V	68 mA	25.4 °C
		关节2	48.18 V	-4243 mA	24.8 °C	
	电流	0.9 A	关节3	48.19 V	2511 mA	24.9 °C
	温度	27 °C	关节4	48.03 V	-291 mA	31.3 °C
			关节5	48.19 V	51 mA	32.4 °C
	湿度	25 %	关节6	47.89 V	-7 mA	30.9 °C
	日志	运	行时间 00 h 11 m 0	4 s		清泉
	15/11/2018 1 15/11/2018 1 release safet 15/11/2018 1 Automaticall 15/11/2018 1 error info: C	5:30:02 [INFORMA 5:30:13 [INFORMA ty mode. 5:30:13 [INFORMA ly release safety 5:30:42 [WARNING onnection timed	ITION] - TeachPen ITION] - RobotEve ITION] - RobotEve node. i]- Call modbus in out	dant Start ntlnfo. event type : 3 ntlnfo. event type : 3 terface failed! Functi	14; event code : 8; even 14; event code : 7; even Ion name : getAllValu	nt content : Manually nt content : e, return value : -1,
	error info : C 15/11/2018 1 ("0x01":"Mai ("0x02":"erro ("0x03":"Tea	5:30:44 [WARNING onnection timed 5:33:58 [INFORMA in control interfac or"),"err_class":(" ching device eme	J- Call modbus in sut (TION] - RobotEve e board A"), "stop 0x04":"Robot arm rgency stop"}).	terface failed! Functi ntlnfo. event type : 3 _model":("0x01":"Cli safety error"),"err_l	ion name : getAllValu 17; event code : 0; even ass 1 shutdown"),"err, node":("0xFF":"All or	e, return value : -1, ht content : {"src": _type": other"}, "err_code":

図 10-61 システム情報表示

- ログ情報は、プロジェクトファイルとログのエクスポートインタフェースを エクスポートします。
- テキストボックスにジョイントワードを入力して、印刷されるログ情報をフィルタできる。

10.9 その他

10.9.1 バージョン情報

図 10-62 バージョン情報

バージョン情報ユニットは、ソフトウェアおよびその他のハードウェアデバイ スのバージョン情報である。

本明細書に対応するロボットバージョン情報は、次の表の通りです。

テーブル 31 バージョン情報

バージョン情報	バージョン番
	号
AUBOPE バージョン	V4.5.46
インターフェースボードバージョ	V3.4.36
ン (Master)	
インターフェースボードバージョ	V3.2.0
\succ (Slave)	
base software version	V4.0.0

11 オンラインプログラミング

11.1 概要

AUBO ロボットシステムは便利なプログラミング方法を提供し、ユーザーはわ ずかなプログラミング基礎だけで AUBO ロボットをプログラミングすることが でき、作業効率を大幅に向上させた。

		机械臂示教	在线编制	呈 设置 扩展 系统	信息关于	
工程	New Project	<>>>			基础条件	
过程	 O Project_Program O Empty 			Loop	Break	Continue
条件 基础条件	3			lf	Else If	Else
·设条件 漆加到之前				Switch	Case	Default
漆加到之后				Set	Wait	Timer
2				Line Comment	block Comment	Goto
				Message	Empty	
EA	运动限制	100%	4			
t态	• • % 0	1 1 1	5	Move	Waypoint	
₽本	开始停止	单步	6			0

図 11-1 オンラインプログラミングインタフェースの概略図

テーブル 32 オンラインプログラミングパネル

シーケンス	の名前をあげる
番号	
1	メニューバー
2	ツールバー
3	プログラムリスト
4	うんどうせいぎょ
5	プログラム操作
6	プログラム制御
7	「プロパティ」ウィンドウ

ユーザーによる AUBO ロボットのプログラミングは主にオンラインプログラミングパネルで行われ、パネルは主に以下の部分に分かれています。

- 1. メニューバー: 異なるパネル間を切り替えることができ、選択したボタンは 明るいフォントの暗い背景を表示します。
- 2. ツールバー: 引き出し式ボタンを使用して、ユーザーは異なるタスクのニー

ズに応じて選択することができる。

- プログラムリスト: 論理ツリー方式で配置し、プロジェクトファイル中の各 コマンドノードを表示し、ユーザーが修正プログラムを読みやすくする。
- 運動制御:運動制限スライダをドラッグすることで、現在は Move 関数の下の運転速度制御のみを対象として、工事の運転速度を制限することができる。
- 5. プログラムアクション:プログラムリスト内のコマンドを操作できる。

・ 取り消しコマンド、プログラム編集制御コマンドであり、前回のプロ グラム編集状態に復帰でき、最大 30 回取り消すことができる。元に戻すボ タンをクリックすると、前回のプログラム編集状態に戻ります。

・ 元に戻すコマンド、プログラム編集制御コマンドで、前回の元に戻す コマンドを回復することができる。「元に戻す」ボタンをクリックすると、 前回の元に戻すコマンドが復元されます。

切り取り、コピー、貼り付けコマンドはプログラム編集制御コマンドであり、

▶: 切り取りはセグメントの切り取り操作を実現することができる。

□: コピーはセグメントのコピー操作を実現することができる。

貼り付けコマンドはプログラムセグメントの貼り付け操作を実現する
 ことができる。

前除コマンドはプログラム編集制御コマンドであり、兄弟ディレクト リ下のプログラムセグメントを削除することができる。

プログラム制御:開始、一時停止、継続、停止、シングルステップに分けられる。

開始: ロボットプログラム起動の第一歩。

ー時停止: ロボットの運転中、一時停止をクリックするとロボットの動きを 一時停止でき、続行をクリックし、ロボットは動作を継続する、

停止: ロボットの運転中、停止をクリックするとロボットの動きを停止できる。ロボットを再動作させるには、スタートをクリックして、プログラム通りに最初から運転するしかありません。

ワンステップ: ワンステップをクリックすると、ロボットはプログラム論理 (New Project) 順に最初のポイントプログラムを実行し、再度クリックする と次のポイントプログラムを実行します。 エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。エラー! [ホ ーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

V4.5.11

7. プロパティウィンドウ メニューとツールバーのオプションに応じて異なる 表示パネルを提供し、特定の機能、表示、パラメータ設定を行うことができ る。

11.2 機能モジュールの説明

11.2.1 テキストボックスエディタ

User	;	+ -	and	or	хог	not
<digital input=""></digital>	:	<digital output=""></digital>	: (с	<-
<analog input=""></analog>	:	<analog output=""></analog>	; 7	8	9	1
<variable></variable>	:	<pose></pose>	: 4	5	6	
<function></function>			: 1	2	3	
< > <= >=		!= true false	0	±		+
Cancel		Space			T	ок

図 11-2 テキストエディタ 1

図 11-3 テキストエディタ 2

ティーチングインタフェースの入力ボックスをクリックすると、上図のような テキストボックスエディタがポップアップ表示され、条件の使用や文字や数字の 入力に使用されます。

- loop、if、set などのコマンド条件の設定
- ▶ ユーザデジタル I/O、アナログ I/O などの信号条件、
- 変数条件は、変数の使用時に、アラビア数字は数値を表し、信号入出力中に 0は無効を表し、1は有効を表す
- テキスト入力、テキスト入力には下降線「」」を使用する必要があり、ハイ フン「-」は使用できません。

11.3 エンジニアリング管理

- 新しいプログラムを作成するには、新しいプロジェクトを作成する必要がある。
- プログラムはプロジェクトとして保存されています。
- 「プロジェクトプロジェクト」タブには、新規、開く、保存、デフォルトの プロジェクトの4つのボタンがある。

11.3.1 新規プロジェクト

		机械臂示教	在线编程 设置 扩展 系统信息	关于	
工程	New Project	>		基础条件	
1470	▼ SProject_Program				
过程	- S Empty		Loop	Break	Continue
条件					
基础条件			If	Else If	Else
高级条件					
外设条件			Switch	Case	Default
③ 添加到之前					
• 添加到之后			Set	Wait	Timer
			Line Comment	block Comment	Goto
-			Message	Empty	
配置	运动限制	100%	6		
状态	• • % 6		Move	Waypoint	
脚本	开始停止	单步			

図 11-4 新規プロジェクト

- 「新規」をクリックして新規プロジェクトを作成します。プログラムのリストにルートノード(New Project)が表示され、その後のコマンドはこのルートノードの下にあり、タブはベース条件インタフェースに自動的に切り替わります。
- Project_Program、プロジェクトルート条件が表示されます。ここでこの名前 を変更できる。
- 新しいプロジェクトを作成するときに、現在のプロジェクトが保存されていない場合は、ポップアッププロンプトが表示されます。ユーザーは実際の必要に応じて適切なキーを選択できる。
- ▶ 選択を追加する前に、名前を選択する前に新しいコマンドを挿入します。
- チェックをオンにすると、コマンドを選択した後に新しいコマンドを挿入で きる。

11.3.2 プロジェクトの保存

		机械算示数 在线编程 设置 扩展	系统信息 关于
工程	New Project	~~>	保存工程
新建 加载 <u>保存</u> 默认工程	Voject_Program	请输入工程名称	9 .77
2440			
过程			
条件			
RH.	运动限制	100%	
状态	• • % 0	1010	
脚本	开始一师止	单步	

図 11-5 プロジェクトの保存

- 一番左側の保存ボタンをクリックして、名前を入力して、右側の保存ボタン をクリックして、工事の保存を行います。
- プロジェクトファイルは xml 形式で保存されます。
- ▶ 保存後のファイルを編集する場合は、保存操作を行います。
- 保存されたファイルはロード先に表示され、「プロジェクトファイルとログのエクスポート小結はファイルのエクスポートを実行します。

11.3.3 デフォルトのプロジェクト

工程	New Project		VA>			默	认工程		
]建	Project_P Sect_P Sect_P Sect_P Sect_P	rogram			BlendRadiu				
载 存				B_Spline	s	ir_eise	MOVEArc	MOVEJ	MOVEL
认工程				MOVEJ_M OVEArc	MOVEJ_M OVEArc1	MOVEJ_M OVECir	MOVEJ_M	MOVEL_M OVEArc	MOVEL_M OVECir
				MOVEL_M OVEL	Procedure	Timer	ahead	ahead_dist ant	continue
				goto	line_block	loop	message	moveJ_ahe ad	moveP
t程				工程夕秋	antes	MICH.	ALC: N		
i件				● 无					
	运动限制		100%	() 自动加载	默认工程				
tō.	• • >	60	2	○ 自动加载	并运行默认工	程			
加本	II bit	200.11	00.4b		(D) DC		HTT 224	1	0-21

図 11-6 デフォルトのプロジェクト

- デフォルトエンジニアリングをクリックして、デフォルトエンジニアリン グファイルのリストから操作が必要なエンジニアリングを選択し、必要に 応じて異なるオプションを選択します。
- デフォルトプロジェクトの自動ロードをチェックして、プログラミング環境を開いたら自動的にデフォルトプロジェクトをロードします。
- 自動ロードとデフォルトプロジェクトの実行をチェックし、プログラミン グ環境を開いた後にデフォルトプロジェクトを自動的にロードして実行し ます。
- 「OK」をクリックして、デフォルトのエンジニアリング構成を決定します。

11.3.4 ロードエンジニアリング

		机械臂示教在	isinte in it	展 系统信息 关于	F	
IN	MoveRelative	VAXA.		201	载工程	Q,
1618	 Project_Progra Coop 	m	4	b 10	1	4
加戦	- 🥴 Set - 🧐 Set		IOTest Move	Relati MoveTest	ToolCalibP oint	Track
保存 默认工程	 Coop MoveT Way Way Way Way Way Way Way Way Set 	oReady point = point point point ak				
过程	Set	e 348				
条件	Verify Way	oReady point				
RH.	▼ C2 MoveA 运动限制	100%				
状态	• • %	7 2 8				
脚本	开始	单步	剧新		删除	20182

図 11-7 ロードエンジニアリング

- 「ロード」をクリックして、ターゲットプログラムを見つけ、プロジェクトをロードします。
- ▶ 開くと、開いているプログラムがプログラムリストにロードされます
- ▶ 左下の開始ボタンをクリックして、移動アームを準備点インタフェースに入り、自動ボタンを押したままアームを開始位置に移動し、OK->開始ボタンを順番にクリックして、ロボットが動作を開始し、タブをシミュレーションモデルインタフェースに自動的に切り替えます。
- エンジニアリングファイルが多い場合は、右上検索ボックスにファイル名 キーワードを入力して検索することができる。

11.3.5 プロジェクトの実行

図 11-8 プロジェクトの実行

プロジェクトファイルの編集が完了したら、クリックしてプロジェクトの実行を 開始することができる。操作手順は次の通りです。

- ▶ 画面下のスタートボタンをクリックします。
- アームが初期点位置まで動作するまで長押し自動移動 (cancel キーは OK と 表示)、
- ➢ OK ボタンをクリックします。
- スタートボタンを再度クリックします。

11.3.6 プロジェクトルートノード

プロジェクトルートノードは、プログラムツリーの Project _Program。プロジェクトルートノード条件では、プロジェクトを停止/一時停止/続行するときに実行するプロジェクトを個別に選択できる。

注:

1.エンジニアリングルートノード関連のプロセスには運動関数を含めることは できません。一般的に IO を設定するなどの非時間的な操作が行われます。

2.一時停止/継続時の関連プロセス使用時に、IO の設定ロジックはユーザーがメ ンテナンスを必要とし、継続時にメインプログラムとロジック衝突しないように するなど、エンジニアリングファイルのロジック関係に注意する。

工程	New Project V ^ >	工程根节点条件
过程	1 V S Project_Program 2 S Empty 3	昵称 Project_Program 图
条件 基础条件 高级条件		✔ 当工程停止时执行 选择需执行的过程: tsettool ▼
外设条件添加到之前添加到之后		 ✓ 当工程暂停时执行 选择需执行的过程: tsetIO
		✔ 当工程继续时执行 选择需执行的过程: tsetvariable ▼
配置	运动限制 100%	刷新 确认
状态	 	
脚本	开始 停止 单步	

図 11-9 プロジェクトルートノード

11.4 サブエンジニアリング

		机械臂示教在线	编程 设置 扩展 系统	信息 关于	
工程	New Procedure	VA>		基础条件	
过程	Orocedure_Prog Orocedure_Prog Orocedure_Prog Orocedure_Prog Orocedure_Prog Orocedure_Prog	ram	Loop	Break	Continue
条件 基础条件			If	Else If	Else
▶设条件)漆加到之前			Switch	Case	Default
添加到之后			Set	Wait	Timer
			Line Comment	block Comment	Goto
			Message	Empty	
C II	运动限制	100%			
犬态	+ + × ć	1 1 1	Move	Waypoint	
脚本	开始一座止	单步			

図 11-10 サブエンジニアリングの概略図

サブプロジェクトは多くのプログラムファイルに使用でき、1つのタスク内の独 立したファイルに使用することも、他のプログラムファイルに呼び出して何度も 使用することもできる。サブエンジニアリングは制御エンジニアリングであって も被制御エンジニアリングであってもよい。

サブプロジェクトに含まれるプログラムデータは、メインプログラム内のサブ プロジェクトがアクティブ化されたときのデータのみです。サブエンジニアリン グは、メインプログラム内の1つ以上の場所から、変数の値や外部デバイスの入 力信号などの特定の条件に基づいて呼び出すことができる。

- サブプロジェクト。多重化に使用するセグメントを編集でき、他のプロジェクトセグメントに簡単にロードできる。
- 新規、ロード、保存工事方法は工事管理章節と一致している。サブプロジェクトのプログラムリストは New Procedure と表示されているので、区別に注意してください。

11.4.1 新規プロシージャファイル

Procedure はサブエンジニアリング(プロセス)編集コマンドです。Procedure プ ログラムセグメントでは、多重化のためのプログラムセグメントを編集でき、他 のプロジェクトセグメントに簡単にロードできる。プロジェクトファイルとサブ プロジェクトファイルの両方でサブプロジェクトコマンドを呼び出すことがで きる。

- ツールバーのプロジェクトまたはプロセスの下で「新規」をクリックすると、 プロジェクトロジックに New Project または New Procedure が表示されます。
- プログラムリストでサブプロジェクトコマンドを挿入する必要がある論理 行を選択し、ツールバーで条件の下の詳細条件をクリックし、プロパティウ ィンドウで Procedure をクリックします。

図 11-11 新規サブプロジェクト (手順)の概略図

 プログラムリストで Project _Program または Procedure _Program は名前を変 更できる

	工程根条件	
昵称	请输入昵称	
	确认	

図 11-12 プログラムリスト中性子プロジェクト (プロセス) 名の変更

注意: Procedure プロシージャセグメントに Thread プログラムを挿入することはできません。

11.4.2 サブプロジェクトコマンドを呼び出す (Procedure)

新規プロジェクトまたはプロセスファイルを作成し、高度な条件を選択して、 Procedure コマンドをクリックします。

	机械臂示教 在线编程 设置 扩展	系统信息关于
工程	New Project* V ^ >	高级条件
	1 🔻 🤣 Project_Program	
过程	2 Procedure Undefined	
条件	3	Thread
基础条件		Procedure
高级条件		riocedure
外设条件		
○ 添加到之前		Script
• 添加到之后		
		Record Track
		Offline Record
配置	运动限制 100%	Command Group
状态	↑ < X G < B < B < B < B < B < B < B < B < B <	
脚本	开始 停止 单步	

プロジェクトリストで Procedure Undefined を選択すると、呼び出し可能なサブ プロジェクトファイルがプロパティウィンドウに表示されます。サブプロジェク トファイルを選択し、確認をクリックするとサブプロジェクトファイルが呼び出 され、呼び出されたサブプロジェクトファイルのコマンドがプロジェクトリスト に表示されます。 エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。エラー! [ホ ーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。 V4.5.11

	机械臂示教	在线编程 设置 扩展 系统信息 关于
工程	New Project* V ^ >	过程条件 C
过程	1 V OPOJECT_Program 2 V OTO1MoveJ_J	000000
条件	3 ▼ O Loop ▼ O MoveC	T01MoveJ_T02MoveL_T03_MoveJ T03_MoveJ T03_MoveJ T04_set_to
基础条件	- S Timer1 ▼ S MoveA S Waypoint1	T04_setDO T04setcolli T05continu T06break T07_MoveP T08B sion e 2021
外设条件 ⑦ 添加到之前	▼ ⊘ MoveB	
• 添加到之后	✓ MoveC ✓ MoveC ✓ Waypoint3 ✓ Timer2 ✓ MoveA	e e
配置	v v Movec v Waypoint3 v Timer3 v Timer3	
状态		
脚本	开始 停止 单步	刷新 移除 确认

図 11-13 サブプロジェクトファイルの呼び出し

- ファイル更新ボタンに更新をクリックして、現在のファイル保存ディレクト リを検索し、表示ファイルの変更を更新します。
- ▶ 選択した Procedure を削除するには、「削除」をクリックします。

11.4.3 命令群コマンドを呼び出す (Command Group)

命令群命令。上位機とサーバ間の通信遅延がないため、サブエンジニアリングコマン ドに比べて軌跡をスムーズにすることができ、路点接続を高速にすることができるサ ブエンジニアリングを指定することができる。

新規プロジェクトまたはプロセスファイルを作成し、詳細条件を選択して Command Group コマンドをクリックします。 V4.5.11 エラー! [ホーム] タブを使用して、ここに表示する 文字列に 标题 2 を適用してください。エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

	机械臂示教 在线编程 设置 扩展 系统信息	关于
工程	New Project* V A >	高级条件
过程	1 ▼ ⊘ Project_Program 2 □ □ □ 3 □ □ □	Thread
条件		
基础条件 高级条件		Procedure
外设条件○添加到之前●添加到之后		Script
		Record Track
		Offline Record
配置	运动限制 100%	Command Group
状态	 ★ ★ ★ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 	command droup
脚本	开始停止 单步	

プロジェクトリストの CommandGroup Undefined を選択すると、呼び出し可能な サブプロジェクトファイルがプロパティウィンドウに表示されます。サブプロジ ェクトファイルを選択し、確認をクリックするとサブプロジェクトファイルが呼 び出され、呼び出されたサブプロジェクトファイルのコマンドがプロジェクトリ ストに表示されます。

図 11-14 サブプロジェクトファイルの呼び出し

エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。エラー! [ホ ーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

V4.5.11

- ファイル更新ボタンに更新をクリックして、現在のファイル保存ディレクト りを検索し、表示ファイルの変更を更新します。
- ▶ 選択した CommandGroup を削除するには、「削除」をクリックします。

11.5 **移動コマンド(**move)

Move(移動) コマンドは、ロボットエンドツールの中心点の路点間の移動操作 に使用します。基本ポイント(waypoint)でロボットの運転を制御するには、ポ イント(waypoint)を運動コマンドの下に置く必要がある。

- プログラムリストに Move ノードが追加され、下に Waypoint ノードが含まれています。
- ニックネームの右側の入力ボックスをクリックして、コマンド名を変更します。
- ➢ Move ノードを選択すると、Move コマンドの状態設定ができる。
- アーム運動のプロパティには、軸運動、直線運動、軌道運動の3つの選択肢がある。詳細は後ほどまとめます。
- ➤ この Move コマンドを削除するには、「削除」をクリックします。
- ▶ 確認をクリックして、構成の完了を確認し、保存しなければなりません。
- 直線運動および軌道運動における arc および Movep 運動モードはデカルト 空間軌道計画に属し、逆運動学的な解決が必要である。したがって、無解、 多解、近似解が存在する可能性がある、また、ジョイント空間とデカルト空 間の非線形関係により、軸動運動が最大速度と加速度の制限を超える場合が ある。

オフラインシミュレーションの実行可能性を検証することを強く お勧めします。

11.5.1 移動タイプ

じくうんどう

		м	ove条件		
称 Move		X			
轴动			[线	🔵 轨迹	
相对偏移	1123	≣(m)]	姿态(deg) 실	e标系 Base	
x o					(
Y 0					(
Z 0					(
and the second se		50 %	共享速度		
天节1速度				(1~140.75) /5	
关节1速度 关节1加速度	•	50 %	共享加速度	(1~148.73) /s (1~991.72)°/s^2	
天节1速度 关节1加速度 提前到位	v	50 %	共享加速度	(1~991.72)°/s^2	
天节1速度 关节1加速度 提前到位	•	50 %	共享加速度	(1~148.73) /s (1~991.72)°/s^2	
天节1速度 关节1加速度 送节1加速度 提前到位	•	50 %	共享加速度	(1~148.73)/s	
天节1速度 关节1加速度 提前到位	•	50 %	共享加速度	(1~991.72)°/s^2	
天节1速度 关节1加速度 提前到位	•	50 %	共享加速度	(1~148.73) /s (1~991.72)°/s^2	

図 11-15 じくうんどう

路点間の各関節の運転角度に応じて、設定されたモータの最大速度と最大加速 度(6つのアームの共通パラメータ)に基づいて制限され、各関節は目標の路点 (始終速度はすべてゼロ)に最速で同期して到達する。運転中は、軌跡表示機能 によりアーム端の運転軌跡を観察することができる。TCP がこれらのポイント 間を移動する経路を考慮せずに、ロボットアームをポイント間ですばやく移動さ せたい場合は、この移動タイプは良い選択です。軸動運動は、空間的に十分な環 境下で、最も速い方法で移動するのに適しています。動き方は下図のようになり ます。

エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。エラー! [ホ ーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

図 11-16 ジョイント移動軌跡

関節の運転中に関節 1-関節 6 の関節最大角速度と最大角加速度の割合をそれぞれ設定することができ、共有ボタンをクリックして速度または加速度を他の関節にコピーすることができる。

ちょくせんうんどう

			Move条件		
記称	Move	(M			
5 4	油动	۲	直线	○ 轨迹	
	相对偏移	位置(m)	姿态(deg) 坐	标系 Base	
X	0				<
Y	0				(
z	0				<
末	端线性加速度 提前到位	None	50 %	(1~2000)mm/s^2	

図 11-17 ちょくせんうんどう

ツールの中心点がルートポイント間を直線的に移動します。これは、各ジョイントが直線パス上にツールを維持するためにより複雑な移動を実行することを意味します。この移動タイプに適した共通パラメータには、必要なツールの最大速度とツールの最大加速度(それぞれ mm/s と mm/s(TF31²)と運動モードがある。

文字列に 标题 2 を適用してください。エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

軸動運動と同様に、ツール速度が最大速度に達することができるかどうかは、直 線変位と最大加速度パラメータに依存します。動き方は下図のようになります。

図 11-18 ちょくせんうんどうきせき

きせきうんどう

複数の路点の軌跡運動、運転中に対応する関節空間またはデカルト空間の運転 速度、加速度が連続し、始終路点速度はゼロである。現在、Arc (円弧)、Cir (円 周)、moveP (直線軌跡の円弧平滑遷移)、B_Spline (Bスプライン曲線)の4つ のモード。トラックモーションを記述する場合、Arc と Cir モーション Moveの 条件には3つのルートポイントがあり、MoveP と B_Spline 運動 Move 条件下で は少なくとも3つの路点(理論的に上限はない)が必要であり、このコマンドの 前に軸動 Move コマンドを挿入する必要があり、この Move コマンドの下のノー ドは軌跡運動の最初の路点と一致しなければならない。

注意: 姿勢を持つ円弧運動 (arcwithhorirot) と姿勢を持つ円周運動 (cirwithhorirot) を使用するには、アーム 6 関節は±360°回転をサポートする必要がある。詳細は 供給業者に連絡してください。

円弧運動

		古代	1	本 力 : 赤
/ #曲4/J		且均		Thur the second
相对偏移	位置(m)	旋转(deg)	坐标系Base	Ŧ
x 0				()
Y 0				< <u>x</u>
ZO				()
末端线性加速度 提前到位	None	50	% (1~2000)n	nm/s^2
轨迹类型	Arc		•	

図 11-19 円弧運動

3 点法は円弧を決定し、開始点から終了点までの移動を順番に行い、デカルト空間軌跡計画に属する。姿勢変化は開始点と終了点の影響のみを受けます。最大速度と加速度は同じ直線運動を意味する。トラックタイプで Arc を選択すると、円弧の動きになります。

円周運動

円弧運動と同様に、3点法は全円軌跡と運動方向を決定し、全円周運動を完了したら起点に戻る。運動中は開始点の姿勢を維持します。最大速度と加速度は同じ 直線運動を意味する。パラメータタイプ Cir を選択すると、円周運動のために、 右側のテキスト入力ボックスに円周サイクルの回数を入力できる。 V4.5.11 エラー! [ホーム] タブを使用して、ここに表示する 文字列に 标题 2 を適用してください。エラー! [ホーム] タブを使用して、ここに表示する文字列に 标题 2 を適用してください。

●轴云	1ove 边	Ø	直线	(a) #4**		
一轴	'n	0	直线	a +4.1+		
相				● 轨迹		
	对偏移	位置(m)	旅车车(deg)	些标系 Base	Ŧ	
X 0					(3	
Y 0					(3	
ZO					()	
末端4	线性加速度 是前到位 类型	None	50 % • v	(1~2000)mm/s^2 循环 <u>1</u> 2	R	

図 11-20 円周運動

ArcWithOriRot

3 点法は円弧を決定し、開始点から終了点までの移動を順番に行い、デカルト空間軌跡計画に属する。姿勢を持つ円弧運動ツールは円弧運動がある軌跡の中心方向を指し、ツールの運動軌跡はツール座標系の Z 軸と円弧軌跡がある円平面の角度を保持し、この角度は最初のティーチングの点と円弧軌跡がある平面の角度である。

			Move条件			
昵称	Move	X				
•	由动	C	直线		• 轨迹	
	相对偏移	位置(m)	旋转(deg)	坐机	示系 Base	Ŧ
X						(3
Y						
Z						(3
参数						
末道	末端线性速度		5	50 %	(1~2000)mm/s	
末道	末端线性加速度		5	50 %	(1~2000)mm/s^2	
	上 提前到位 No		e	-		
轨道	亦类型	ArcV	VithOriRot	•		

CirWithOriRot

R称 Move 轴动 相対偏移 位置 X 0 Y 0	(图) 直线 (m) 旋转(de)	g) 坐标	● 轨迹 系 Base	
● 軸动 ■ 相对偏移 位置 × 0 Y 0	〇 直线 (m) 旋转(de	g) 坐标	 轨迹 系 Base 	
相対偏移 位置 X 0 Y 0	(m) 旋转转(de	g) 坐标	系Base	
X 0 Y 0				
Y 0				C
7 0				C
2 0				C
末端线性加速度 提前到位	None	50 % 	(1~2000)mm/s^2	
轨迹类型	CirWithOriRot	•		
	(

図 11-22 ジェスチャー付き円運動

3 点法は円周を決定し、開始点から終了点までの移動を順番に行い、デカルト空間軌道計画に属する。姿勢を持つ円周運動ツールの姿勢は円心方向を指し、ツールの運動軌跡はツール座標系の Z 軸と円周平面の角度を保持し、この角度は最初のティーチングの点と円弧軌跡が位置する平面の角度である。

図 11-23 円周運動軌跡 (左) と姿勢付き円周運動軌跡 (右) 概略図

moveP

直線軌跡の円弧平滑遷移 (moveP): 隣接する2段の直線用に設定されたブレンド 半径で円弧平滑遷移を行い、運転中の姿勢変化は始終点のみの影響を受ける。最 大速度と加速度は同じ直線運動を意味する。

エラー! |ホーム| タブを使用して、ここに表示する 文字列に 标题 2 を適用してください。エラー! |ホーム| タブを使用して、ここに表示する文字列に 标题2を適用してください。

moveP は複数の直線軌跡間の円弧平滑遷移であり、交融半径の運転特徴は連続 運動であり、この時点で停止しないことである。ブレンド半径値が小さいほど、 経路の回転角は大きくなり、反対に、ブレンド半径値が大きいほど、経路の回転 角は小さくなる。

例

2つの move を挿入し、次のように(1)、(1、2、3)3つの路点を設定します。1 つ目の move は関節運動、2 つ目の move は moveP 運動で、プログラムを実行し た後、movePは下図のように軌跡を実行します(1-2'-3'-3)。

図 11-24 こうゆうはんけいうんどうきせき

Bスプライン

B スプライン (B Spline): 与えられたパスポイントに基づいてパスカーブをフ ィットします。フィットカーブを生成するために使用されるパスポイントが多い ほど、予想に近いカーブがフィットされます。B スプラインは、すべての指定さ れたルートポイントをスムーズに通過するカーブです。カーブの始点と終点は閉 じられないことに注意してください。

例

1 つの move を挿入し、以下に示す(1、2、3、4)4 つの路点を設定し、プログラムを実行した後の B スプライン曲線は下図のように軌跡を実行する

図 11-25 B スプライン曲線

11.5.2 路点コマンド (Waypoint)

Waypoint (路点) は AUBO i シリーズロボットプログラムの重要な構成部分であ り、ロボットの末端が到達する位置点を表し、通常、ロボットの末端の運動軌跡 は 2 つ以上の路点で構成されている。

図 11-26 ウェイポイントコマンド

- ニックネームの右側の入力ボックスをクリックして、コマンド名を変更します。ニックネームが変更されると、道路ポイントのグローバル機能をカスタマイズできる。同じニックネームのルートポイントを新規作成し、最初に命名されたルートポイントデータを基準として、ニックネームと関連パラメータを修正したルートポイント、修正したルートポイントニックネームとパラメータを基準とする。
- Waypoint は Move コマンドの後にしか追加できません。
- ▶ 追加する前に追加をクリックすると、そのポイントの前に新しいポイントを

追加できる。

- クリックして追加すると、そのルートポイントの後に新しいルートポイント を追加できる。
- クリックしてここに移動すると、ロボットを現在のルートポイントに移動させることができ、実際のロボットに対して有効です。
- > ジョイントをここまで動かすか、直線をここまで動かすかを選択できる。
- ▶ [削除]をクリックして、このルートポイントを削除します。
- 経路点を設定するには、経路点の位置姿勢を設定するにはクリックします。 設定ポイントをクリックすると、パネルが自動的にアームティーチングに切り替わり、ユーザーはロボットの末端から新しいポイントまでの位置を移動し、右下の確認ボタンをクリックすることができる。
- クリックして、このルートポイントの状態設定を保存することを確認します。 この時点でポップアップ表示条件が保存されています。

かへんろてん

waypoint 条件インタフェースで変数ポイントを選択し、確認すると、このポイントは変数設定で設定されたルートポイントであり、変数のルートポイントが変更されると、エンジニアリングファイルのすべてのルートポイントが変更され、この機能は同じルートポイントのパラメータを一括変更し、プログラミング時間を節約することができる。変数点対応変数構成のタイプは pose 変数です。

相対パスポイント(相対オフセット)

ユーザは、選択した座標系に対する位置または姿勢オフセット量によってロボ ットアームまたはエンドツール座標を運動制御する。

~	相对偏移	位置(m)	旋转(deg)	坐标系	Base	•
Х	0					×
Y	0					×
z	0					×

図 11-27 相対オフセット

座標系

Base 座標系とユーザー定義平面座標系 (plane) に基づいて座標系を選択できる。 ユーザ定義平面座標系(plane)の寸法については、「エラー! 参照元が見つかりま せん。エラー! 参照元が見つかりません。小結。

11.5.3 到着前

目標からの位置、時間、またはブレンド半径に応じて到着前ことを選択すること で、アームの作業効率を高めることができる。

到着前と、ユーザーが設定した距離や時間、ブレンド半径に基づいて運転軌跡の 調整を行い、アームの作業効率を向上させるため、1つ以上の設定点を通過しな い場合がある。

事前到着ボタンをチェックすると、距離目標位置または距離目標位置時間に基づいて早期到着を選択することができる。この Move コマンドの下の waypoint を チェックすると、ユーザーが設定した距離や時間に基づいて運転軌跡の調整を行い、アームの作業効率を向上させるため、ある1つ以上の waypoint を経由して 路点を設定しない場合がある。

早めに所定の位置にチェックすることにより、アームの作業効率を向上させる ために、目標位置から距離、目標位置までの時間及びブレンド半径に従って到着 前ことを選択する。

到着前と、ユーザーが設定した距離や時間、ブレンド半径に基づいて運転軌跡の 調整を行い、アームの作業効率を向上させるため、1つ以上の設定点を通過しな い場合がある。

テーブル 33

を選択し てオプシ ョンを設 定しま す。	特徵	使用範囲
Distance	設定した距離に基づいてこの ポイントに到達するようにチ ェックします	しじくどう
Time	設定した時間に合わせてこの 場所に到着するようにチェッ クします	しじくどう
Blend Radius	設定したブレンド半径パラメ ータに基づいて早めに位置に 到達できるようにチェックす る	支持軸動、直線運動、円弧運動、 円周運動、姿勢を持つ円弧運動、 姿勢を持つ円周運動

注意: 設定パラメータは2点の中間値を限度とし、超えた後は中間値を基準とする。

溶融時に現れる特異点や運動速度が速すぎると、早めにセットアップがキャン セルされます。

軌道を実行する場合は、ブレンド半径によって位置する領域内を設定します (例

の青色の仮想表示線)、

交融半径以外の運転軌跡は、所定の位置に繰り上げて設定されていない軌跡と 一致し、

エンジニアリングファイルの最初の move に早期到着を追加することはお勧め しません。

例

到着距離/時間を繰り上げる

Move J-Move J

MOVEJ_MOVEJ VA>	Move Condition
 Project_Program MoveA Waypoint1 	Alias: MoveB (R) Move Joint Move Line Move Track
▼ © MoveB	Relative Offset Pos(m) Rot(deg) Coord Base X 0 08 Y 0 08 Z 0 08
	Parameters Speed(%) 50,50,50,50,50,50 Acc(%) 50,50,50,50,50 Joint1 Speed • 50 % Share Speed Joint1 Acc • 50 % Share Acc (1~991.72)°/s^2 ✓ Arrival Ahead Distance •

図 11-28 到着前距離/時間 Move J-Move J プログラミング例

3 つの関節運動 (moveA、moveB、moveC) を挿入し、それぞれの道点 (1)、(2)、 (3) を設定し、

早期到着を設定せず、運転軌跡は1-2-3、

moveB チェックを所定の位置に繰り上げ、距離または時間を設定した後、運転 軌跡は 1-2'-3 である。

図 11-29 先着距離/時間 Move J-Move J 運転軌跡例
交融半径への到着前

Move J-Move J

MOVEJ_MOVEJ VA>	Move Condition
 OProject_Program OMoveA OWaypoint1 	Alias: MoveB (R) Move Joint Move Line Move Track
▼ ⊘ MoveB ↓ ↓ ⊘ Waypoint2 ▼ ⊘ MoveC ↓ ⊘ Waypoint3	Relative Offset Pos(m) Rot(deg) Coord Base X 0 08 Y 0 08 Z 0 08
	Parameters Speed(%) 50,50,50,50,50,50 Acc(%) 50,50,50,50,50 Joint1 Speed • 50 % Share Speed Joint1 Acc • 50 % Share Acc Image: Speed state of the spe

図 11-30 到着前ブレンド半径 Move J-Move J プログラミング例

3つの関節運動 (moveA、moveB、moveC) を挿入し、それぞれの道点 (1)、(2)、 (3) を設定し、

早期到着を設定せず、運転軌跡は1-2-3、

moveB チェックを所定の位置に繰り上げ、ブレンド半径を設定した後、運転軌 跡は 1-2'-3'-3 である。

図 11-31 ブレンド半径に到着前 Move J-Move J 運転軌跡例

V4.5.11

Move J- Move arc

MOVEJ_MOVEArc	Mov	ve Condition
▼ 🥺 Project_Program ▼ 🥝 MoveA └── Waypoint1	Alias: MoveB () Move Joint /	Move Line O Move Track
 MoveB Waypoint2 MoveC Waypoint2 Waypoint2 Waypoint3 Waypoint4 	Relative Offset Pos(m)	Rot(deg) Coord Base *
	Parameters Speed(%) 50,50,50,50,50,50 Acc(%) 50,50,50,50,50,50 Joint1 Speed Joint1 Acc	% Share Speed (1~148.75)°/s % Share Acc (1~991.72)°/s^2
	Arrival Ahead Blend	Radius 👻 🖲 BlendRadius 0.040m 🔺

図 11-32 到着前ブレンド半径 Move J-Move arc プログラミング例

2 つの関節運動(moveA、moveB)を挿入し、それぞれのルートポイント(1)、
 (2)を設定し、

円弧運動 (moveC) を挿入し、経路点 (2、3、4) を設定します。

早期到着を設定せず、1-2-3-4のトラックを実行します。

moveB チェックを所定の位置に繰り上げ、ブレンド半径を設定した後、運転軌 跡は 1-2'-3'-3-4 である。

図 11-33 ブレンド半径に到着前 Move J-Move arc 運転軌跡例

Move J- Move cir

MOVEJ_MOVECir VA>	Move Condition	
🔻 😋 Project_Program	Alias: MoveB ()	
MoveA Waypoint1	Move Joint Move Line Move Trac	k
Go MoveB Go Waypoint2	Relative Offset Pos(m) Rot(deg) Coord Base	-
Vavooint2	x [0	(R)
- Waypoint3	YO	(R)
- 🤝 Waypoint4	zo	08
	Parameters Speed(%) 50,50,50,50,50 Acc(%) 50,50,50,50,50	
	Joint1 Speed 🔹 50 % Share Speed (1~148.75)°/s	
	Joint1 Acc 🔹 50 % Share Acc (1~991.72)°/s^2	
	Arrival Ahead Blend Radius V BlendRadius 0.040m	

図 11-34 到着前ブレンド半径 Move J-Move cir プログラミング例

2 つの関節運動(moveA、moveB)を挿入し、それぞれのルートポイント(1)、
 (2)を設定し、

円周運動 (moveC) を挿入し、経路点 (2、3、4) を設定します。

早期到着を設定せず、1-2-3-4のトラックを実行します。

moveB チェックを所定の位置に繰り上げ、ブレンド半径を設定した後、運転軌 跡は 1-2'-3'-3-4 である。

図 11-35 ブレンド半径に到着前 Move J-Move cir 運転軌跡例

Move arc- Move J

MOVEArc_MOVEJ	1	Move条件	
🔻 🧐 Project_Program	昵称 MoveB	()	
▼ 🥴 Loop ▼ 😋 MoveA	轴动	_ 直线	• 轨迹
▼ S MoveB	相对偏移	位置(m) 监转(deg) 当	è标系 Base +
- 😌 Waypoint1	X 0		œ
Waypoint3	Y Q		(8)
▼ 😳 MoveC └── 😳 Waypoint4	Z 0		(B
	参数		
	末端线性速度	50 %	(1~2000)mm/s
	末端线性加速度	50 %	(1~2000)mm/s^2
	✓ 提前到位	Blend Radius 💌	- 交融半径0.200m +
	轨迹类型	Arc	

図 11-36 到着前ブレンド半径 Move arc-Move J プログラミング例

3 つの円弧運動 (moveA、moveB、moveC) を挿入し、それぞれ 3 つの路点 (1) (1、2、3) (4) を設定し、

早期到着を設定せず、1-2-3-4のトラックを実行します。

moveB チェックを所定の位置に繰り上げ、ブレンド半径を設定した後、運転軌 跡は 1-2-2'-3'-4 である。

図 11-37 到着前ブレンド半径 Move arc-Move J 運転軌跡例

V4.5.11

Move arc- Move L

MOVEArc_MOVEL			Move条件		
🔻 🥹 Project_Program	昵称 MoveB	08			
▼ 😳 Loop ▼ 😋 MoveA	() 轴动	C	直线	• 轨迹	
T O MoveB	相对偏移	位置(m)	腔转(deg)	坐标系 Base	Ψ.
- S Waypoint1	X 0				Oli
- 🥹 Waypoint3	Y 0				Ol
▼ Ø MoveC └── Waypoint4	Z 0				08
	参数				
	末端线性速度		50	% (1~2000)mm/s	
	末端线性加速度		50	% (1~2000)mm/s^2	
	✔ 提前到位	Bler	d Radius	- 交融半径0.200m	+
	轨迹类型	Arc		•	

図 11-38 到着前ブレンド半径 Move arc-Move L プログラミング例

関節運動 (moveA) を挿入し、路点 (1) を設定し、円弧運動 (moveB) を設定 し、路点 (1、2、3) を設定し、直線運動 (moveC) を設定し、路点 (4) を設定 し、

早期到着を設定せず、1-2-3-4のトラックを実行します。

moveB チェックを所定の位置に繰り上げ、ブレンド半径を設定した後、運転軌跡は 1-2-2'-3'-4 である。

図 11-39 ブレンド半径に到着前 Move arc-Move L 運転軌跡例

V4.5.11

Move arc- Move arc

MOVEArc_MOVEArc		Move Condition	
O Project_Program O MoveA	Alias: MoveB	08	
- Waypoint1	O Move Joint	Move Line	Move Track
- Vaypoint2 - Waypoint3	Relative Offset) Rot(deg) C	coord Base
🔻 🎯 MoveB	X 0		(3)
- Vaypoint3 - Vaypoint4	Y 0		(H
- Waypoints	Z 0		08
	Parameters		
	End Linear Speed	50 %	(1~2000)mm/s
	End Linear Acc	50 %	(1~2000)mm/s^2
	🖌 Arrival Ahead	Blend Radius 💌	 BlendRadius 0.040m
	Track Type	Arc 🔻	

図 11-40 到着前ブレンド半径 Move arc-Move arc プログラミング例

2 つの円弧運動 (moveA、moveB) を挿入し、それぞれ 3 つの路点 (1、2、3) (3、 4、5) を設定し、

早期到着を設定せず、1-2-3-4-5のトラックを実行し、

moveB チェックを所定の位置に繰り上げ、ブレンド半径を設定した後、運転軌 跡は 1-2-3'-4'-4-5 である。

図 11-41 到着前ブレンド半径 Move arc-Move arc 運転軌跡例

Move L- Move L

MOVEL_MOVEL	Move Condition
▼ 🥹 Project_Program ▼ 🥹 MoveA └── 😒 Waypoint1	Alias: MoveB (C) Move Joint Move Line Move Track
MoveB Waypoint2 MoveC	Relative Offset Pos(m) Rot(deg) Coord Base
- 🌝 Waypoint3	Y D CE
	Z 0 (a) Parameters End Linear Speed 50 % (1~2000)mm/s End Linear Acc 50 % (1~2000)mm/s^2 Image: Comparison of the second se

図 11-42 到着前ブレンド半径 Move L-Move L プログラミング例

3 つの直線運動 (moveA、moveB、moveC) を挿入して、それぞれ路点 (1)、(2)、(3) を設定して、

早期到着を設定せず、運転軌跡は1-2-3、

moveB チェックを所定の位置に繰り上げ、ブレンド半径を設定した後、運転軌跡は 1-2'-3'-3 である。

図 11-43 ブレンド半径に到着前 Move L-Move L 運転軌跡例

Move L- Move arc

MOVEL_MOVEArc	Move Condition	
 OProject_Program OMoveA OWaypoint1 	Alias: MoveB () Move Joint • Move Line Move Trad	ck
 MoveB Waypoint2 MoveC Waypoint2 Waypoint3 Waypoint4 	Relative Offset Pos(m) Rot(deg) Coord Base	* (8) (8)
	Parameters End Linear Speed 50 % (1~2000)mm/s End Linear Acc 50 % (1~2000)mm/s^2 ✓ Arrival Ahead Blend Radius ▼ BlendRadius 0.040m	

図 11-44 到着前ブレンド半径 Move L-Move arc プログラミング例

2 つの直線運動 (moveA、moveB) を挿入し、それぞれの道点 (1)、(2) を設定 し、

円弧運動(moveC)を挿入し、経路点(2、3、4)を設定します。

早期到着を設定せず、1-2-3-4のトラックを実行します。

moveB チェックを所定の位置に繰り上げ、ブレンド半径を設定した後、運転軌跡は 1-2'-3'-3-4 である。

図 10 35 交融半径に到着前 Move L-Move arc 運転軌跡例

V4.5.11

Move L- Move cir

MOVEL_MOVECir VA>	Move Condition	
▼ 😳 Project_Program ▼ 🧭 MoveA └── Waypoint1	Alias: MoveB (2) Move Joint Move Line Move T	rack
▼ ⊘ MoveB	Relative Offset Pos(m) Rot(deg) Coord Base	- CR
	Parameters End Linear Speed 50 % (1~2000)mm/s End Linear Acc 50 % (1~2000)mm/s^2 Arrival Ahead Blend Radius Y	m 🔺

図 11-45 到着前ブレンド半径 Move L-Move cir プログラミング例

2 つの直線運動 (moveA、moveB) を挿入し、それぞれの道点 (1)、(2) を設定 し、

円周運動 (moveC) を挿入し、経路点 (2、3、4) を設定します。

早期到着を設定せず、1-2-3-4のトラックを実行します。

moveB チェックを所定の位置に繰り上げ、ブレンド半径を設定した後、運転軌 跡は 1-1'-2'-3-4 である。

図 11-46 ブレンド半径に到着前 Move L-Move cir 運転軌跡例

11.6 基本条件コマンド

11.6.1 ループコマンド (Loop)

Loop コマンドは、連続して複数回繰り返されるプログラムコードに使用できる。 繰り返し必要なプログラムコードはループコマンドに配置されます。loop コマ ンドは、無限反復、特定の回数、または式が真(変数や入力信号など)になるよ うに構成することができる。

- Loop はループコマンドで、Loop ノードに含まれるプログラムは、終了条件 が成立するまでループします。
- ニックネームの右側の空白口をクリックすると入力ボックスがポップアップし、コマンド名を変更できる。
- ▶ プログラムの無限ループを実現するには、無限ループを選択します。
- ▶ ループ_を選択回循環回数を設定し、回数に達したら循環を終了します。
- ▶ loop 条件を選択して循環条件式を設定し、式が成立すると循環に入り、式が 成立しないと循環を終了する。「クリア」をクリックして式をクリアします。

\triangleright	[OK]をクリックしてコ ⁻	アンドの状態設定を確認し、	保存します。
------------------	---------------------------	---------------	--------

			Loop 务	条件		
尼称	Loop		æ			
● 无限	艮循环					
) 循环	F	次				
) Loo	op 条件					清除
		移除			确认	

図 11-47 ループ状態

11.6.2 ループ・コマンドのスキップ (Break)

Break コマンドは、Break 条件が成立するとループを飛び出すループを飛び出す ループコマンドです。

- ニックネームの右側の空白口をクリックすると入力ボックスがポップアップし、コマンド名を変更できる。
- ユーザーは Break コマンドの使用時の文法に注意しなければならない。
 Break は Loop ループでしか使用できず、Break の前に If コマンドが必要で、
 If 中の判断条件が成立した場合、Break コマンドを実行してループを飛び出す。そうでないとエラーメッセージが表示されます。
- ▶ この Break コマンドを削除するには、「削除」をクリックします。

昵称	Break	()
_	移除	确认

図 11-48 ブレーク条件

11.6.3 単一ループ終了コマンド (Continue)

Continue は単一ループを終了するコマンドであり、Continue 条件が成立すると、 本ループを終了する。Break コマンドとの違いに注意して、Break はループ全体 を飛び出して、もう入らないで、Continue は単一のループを飛び出して、次のサ イクルはループの中に入ります。

- ニックネームの右側の空白口をクリックすると入力ボックスがポップアップし、コマンド名を変更できる。
- ユーザーは Continue コマンドの使用時の構文に注意しなければならない。
 Continue は Loop ループでしか使用できず、Continue の前に If コマンドが必要であり、If の判断条件が成立すると Continue コマンドを実行して、今回のループを飛び出す。そうでないとエラーメッセージが表示されます。
- ▶ 「削除」をクリックしてこの Continue コマンドを削除します。

	Continue 🕯	条件
昵称	Continue	(R
	移除	确认

図 11-49 Continue 条件

11.6.4 If コマンド (if...else)

If…else は判定コマンドを選択し、判定条件により異なるプログラム分岐を実行 する。

- ニックネームの右側の空白口をクリックすると入力ボックスがポップアップし、コマンド名を変更できる。
- If 条件で空白ウィンドウをクリックすると図のような入力ボックスがポッ プアップし、選択判断条件式を入力でき、式の演算は C 言語演算規則に従う。式が成立すると If ノードに含まれるプログラムが実行され、式が成立しない場合は Else または Else if ノードに含まれるプログラムが実行される。
- ▶ 「消去式の削除」をクリックします。
- Else if を追加するには、Else If ノードを追加するにはをクリックします。1 つの If に複数の Else If を追加することができる。
- Else を追加するには、Else ノードを追加し、現在の If ノードと If.Else を組 み合わせます。1つの If には1つの Else しか追加できません。
- 削除をクリックすると、この If コマンドが削除され、この If に対応する Else If および Else も一緒に削除されます。

称	If	×	
条 <mark>件</mark>			清除

▶ クリックしてステータス設定を確認し、保存します。

図 11-50 状態の場合

11.6.5 条件選択コマンド (Switch...Case...Default)

Switch…Case…Default は条件選択コマンドで、条件を判断することで異なる Case プログラム分岐を実行します。これは、変数の値に基づいてプログラムのプロセ スを制御するために使用できる。

- ニックネームの右側の空白口をクリックすると入力ボックスがポップアップし、コマンド名を変更できる。
- 条件の下で空白のウィンドウをクリックすると入力ボックスがポップアッ プされ、選択判断条件式を入力することができ、式の演算は Lua 言語演算規 則に従う。Switch コマンドを実行すると、プログラムは式の数値を計算し、 次の Case 文の条件数値と順次比較し、等しければその Case の下のプログラ ムセグメントを実行し、条件を満たす Case 数値がなければ Default 対応の プログラムセグメントを実行する。
- 注意: 真偽を判断するには true/false しか使えず、1/0 で代用することはできない。
- ▶ 「消去式の削除」をクリックします。
- Case を追加するには、Case ノードを追加し、現在の Switch ノードと Switch
 …Case を組み合わせます。1つの Switch に複数の Case を追加できる。
- Default ノードを追加するには、「Default の追加」をクリックします。1つの Switch に1つの Default しか追加できません。
- 選択した Switch を削除するには、削除をクリックしてください。この Switch に対応する Case と Default も一緒に削除されます。
- ▶ ステータス設定を確認して保存するには、をクリックします。

			Switch 条件	†	
尼称	Switch	×			
f 条件					清除

11.6.6 設定コマンド (Set)

	Set条件	
昵称 Set		
□ 工具参数	flange_center <	
□ 碰撞等级	关闭	
01 🔯		
User 🔻	设置IO	
🥑 设置DO	U_DO_00 🔹 🖲 Low 🔿 High	
设置AO	C00 -	
□ 变量		清除
V_B_1	* =	
	移除 确认	

図 11-52 設定条件

- ニックネームの右側の入力ボックスをクリックして、コマンド名を変更しま す。
- ▶ ツールパラメータをチェック:設定したツールセンターを選択できる。
- 衝突レベルをチェックして、安全レベルを選択することができる
- ▶ 設定コマンドは、ロード DO/AOの状態を設定するために使用します。
- ▶ 変数のチェック:下側のドロップダウンリストで変数を選択し、右側に選択 した変数に式を割り当てます。式の演算はC言語演算規則に従っています。
- ▶ 「除去」をクリックして set コマンドを除去します。
- ▶ 確認するにはをクリックし、コマンドの状態設定を保存します。
- ▶ bool 型変数は変数をセットするときに0または1を割り当てることはでき ません。int 型変数には true や false を割り当てることはできません。

V4.5.11

11.6.7 待機コマンド (Wait)

Wait (Wait) コマンドは、待ち時間またはデジタル入力信号に使用されます。

- ニックネームの右側の入力ボックスをクリックして、コマンド名を変更します。
- ▶ 待ち時間をチェックして待ち時間を設定し、時間値はユーザーが設定します。
- ➢ wait条件をチェックすると、式を入力して待機方法を設定できる。
- ▶ 条件の内容をクリアするには、「クリア」をクリックします。
- ▶ wait 条件の保存を確認するには、をクリックします。
- ➤ wait 除去(Wait) コマンドを除去するには削除をクリックします。

Wait.	(8)		
等待时间	ı 🦲	0 s	
Wait条件	ŧ		清除

図 11-53 Wait 条件

11.6.8 ラインコメントコマンド (Line Comment)

Line Comment は行注釈コマンドで、次のプログラム行を行注釈で説明します。

- ニックネームの右側にある空白の入力ボックスをクリックすると、コマンド 名を変更できる。
- コメントの右側にある空白の入力ボックスをクリックして、次のプログラム 行の説明を入力することができる。
- ▶ 選択した行コメントコマンドを削除するには、「削除」をクリックします。
- > ステータス設定を確認して保存するには、をクリックします。

		行注释条件
昵称	Line_Comment	
注释	请输入注释	
	移除	确认

図 11-54 行コメント条件

11.6.9 ブロック注釈コマンド (Block Comment)

Block Comment はブロック注釈コマンドで、ブロック注釈を介して次のセグメントを説明します。

- ニックネームの右側にある空白の入力ボックスをクリックすると、コマンド 名を変更できる。
- コメントの右側の空白の入力ボックスをクリックして、入力文字は次のプロ グラムセグメントの説明を説明することができる。
- ▶ 選択したブロック注釈コマンドを削除するには、「削除」をクリックします。
- ▶ ステータス設定を確認して保存するには、をクリックします。

Block_Comment (3)	
请输入注释	
12.K¢	価は

図 11-55 ブロック注釈条件

11.6.10タスク転送コマンド (Goto)

Goto コマンドは、現在のタスクを中断し、他のタスクに移動することができる。

図 11-56 後藤状態

- ニックネームの右側にある空白の入力ボックスをクリックすると、コマンド 名を変更できる。
- 選択した Goto コマンドを削除するには、「削除」をクリックします。
- ▶ をクリックして設定を確認し、保存します。

例

オンラインプログラミングは次のようになります。

図 11-57 Goto コマンドプログラミングの例

ロボットの動作は次のようになります。

図 11-58 Goto コマンドプログラミング実行軌跡例

ロボットは A から B に移動するようにプログラムされているが、B に向かう途 中で信号 F を受信し、B 方向への移動を停止し、すぐに C に向かう。

に注意

- ➢ Goto コマンドはスレッドプログラムで使用する必要がある。
- GOTOが正常に動作するようにするには、予測不可能な問題を引き起こし、 ロボットを停止する可能性がある少なくとも 0.01 s の「待機」コマンドが必 要です。

11.6.11 「ポップアップ」 コマンド (Message)

Message は情報ポップアップコマンドであり、情報ウィンドウをポップアップすることで、使用者に状態情報を伝達する。ポップアップウィンドウコマンド (Message)を使用して、このコマンドを実行するときに画面に表示されるメッ セージを指定します。

- ニックネームの右側の入力ボックスをクリックして、コマンド名を変更します。
- メッセージの種類を選択できる。Message タイプドロップダウンメニューを クリックして、それぞれ Information、Warning、Critical、3 種類の異なるアイ コンスタイルのメッセージタイプに対応します。
- メッセージの右側の空白の入力ボックスをクリックして、テキストを入力して、状態情報を伝えることができる。
- ポップアップウィンドウが表示されると、ロボットはプログラムの実行を続行するために、ユーザー/オペレータがウィンドウの決定ボタンを押すのを待ちます。
- メッセージボックスがポップアップされたときにプロジェクトを停止し、情報ウィンドウがポップアップされたときにプロジェクトプロジェクトが自動的に停止するかどうかをチェックします。
- ▶ 選択した Message を削除するには、「削除」をクリックします。
- > ステータス設定を確認して保存するには、をクリックします。

			Message条件
昵称	Message	()	
Mes	sage类型	Information	•
	消息	请输入消息	
当	消息框弹出	时停止工程	
	1	移除	确认

図 11-59 メッセージ条件

11.6.12空のコマンド (Empty)

- Emptyは空のコマンドで、空のコマンドを挿入し、貼り付けなどの操作のためにプログラム行空間を空けるのに便利です。
- 「」【削除】をクリックして、選択した Empty を削除します。

11.7 詳細条件コマンド

11.7.1 マルチスレッド制御コマンド (Thread)

Thread はマルチスレッド制御コマンドである。Thread プログラムセグメントには、メインプログラムとの並列制御を可能にする Loop ループコマンドが必要です。

注: マルチスレッドの使用はできるだけ避けることをお勧めします。マルチスレッドを使用する必要がある場合は、マスタースレッドとセカンダリスレッドの並 列論理とタイミングが一致していることに注意してください。

- ニックネームの右側の入力ボックスをクリックして、コマンド名を変更します。
- ▶ 選択した Thread を削除するには、「削除」をクリックします。
- > ステータス設定を確認して保存するには、をクリックします。

	Thread	条件
线程名称	Thread 🗵	
	移除	确认
	図 11-60 糸の状態	

11.7.2 スクリプトコマンド (Script)

Script はスクリプト編集コマンドです。Script では、行スクリプトとスクリプト・ファイルの追加を選択できる。

- ニックネームの右側の入力ボックスをクリックして、コマンド名を変更します。
- 行スクリプトをクリックすると行スクリプトが追加され、下の入力ボックス にスクリプト制御命令を1行入力することができる。

尼称	Script	(3)		
请输)	、行脚本			

図 11-61 Script 条件-行スクリプト

スクリプトファイルをクリックするとスクリプトファイルが追加され、ファイルリストからスクリプトファイルをロードする必要があるものを選択できる。

		Script条件		
○ 行脚本	● 脚本文(件		
test				
刷新	ī (移除	确认	

図 11-62 Script 条件-スクリプト・ファイル

スクリプトファイルコピーディレクトリを下図に示す

🛞 🗐 🗊 script				
< > · teachpenda	nt share teachpendan	t script	٩	
Places ⑦ Recent Home Desktop Documents Downloads	nove nove 001script.aubo fat init_ father.aubo	set t set i set i set i set i set j set j set i set i set i	child.aubo	

図 11-63 Script 条件-スクリプト・ファイル

- ファイル更新ボタンに更新をクリックして、現在のファイル保存ディレクト リを検索し、表示ファイルの変更を更新します。
- ▶ 選択した Script コマンドを削除するには、「削除」をクリックします。
- ▶ ステータス設定を確認して保存するには、をクリックします。

11.7.3 オフラインコマンド (Offline Record)

Offline Record コマンドは、オフラインプログラミングソフトウェアで生成され たトラックファイルをオンラインプログラミングに埋め込むことができる。

		机械臂示教	在线项程 设置	扩展 系約	能信息 关	Ŧ	
工程	New Project*	<pre>>>></pre>			高封	线轨迹条件	
过程	Project_Progra Offline_Trac	m k Undefined					
条件							
基础条件							
高级条件							
外设条件							
○ 添加到之前							
🖲 添加到之后							
			运动到准备点参	眇			
配置	运动限制	100%	关节1速度	*	50 %	共享速度	(1~150)°/s
状态	• • %	7 6	关节1加速度	-	50 %	共享加速度	(1-150)°/s^2
脚本	开始一座止	单步	R	AI RFT		移除	确认

図 11-64 オフライン軌跡条件

- ▶ オフラインファイルを選択し、確認をクリックして保存します。
- 界面下側入力ボックスは、アームが準備点まで移動する際の各関節の速度及び加速度を設定することができる。修正後は確認ボタンをクリックしてください。
- インポートされたトラックファイル形式は、各行に 6 つのジョイント角度 を含み、単位はラジアンである必要がある。
- ▶ 読み込まれたトラックファイルの接尾辞は.offで終わる必要がある。
- インポートされたファイルは AUBOPE ソフトウェアインタフェースの下に 表示されるファイルプラスの下にコピーする必要がある。コピーディレクト リは次の図のようになります。

図 11-65 オフライントラックファイルインポートパス

V4.5.11

11.8 トラックレコード

記録軌跡は、アームの運動軌跡を一定期間記録し、オンラインプログラミング環 境に適用することができる。

新規軌跡:スタートボタンをクリックした後、アーム運動軌跡の記録を開始し、 完了ボタンをクリックして記録を終了し、入力ボックスに軌跡名を入力し、保存 をクリックした後、軌跡記録を完了する。

軌跡再生: 軌跡アイコンを選択して、インタフェースの中のロードをクリックして、長押しで準備点ボタンに移動して、アームを軌跡記録の初期位置に移動して、 それから運転をクリックして、軌跡再生を行うことができる。

トラックの一時停止:停止をクリックすると、再生中のアームが一時停止します。

軌跡が一時停止した後に回復する: 長押しで準備点に移動してアームを現在の 進行形に同期させた後、運転をクリックすると、軌跡の再生を回復することがで きる。

間隔時間:トラック記録時間の単位は各路点 100 ms で、間隔時間の意味はどの くらいの時間でこの 100 ms を再生するか、例えば間隔時間を 50 ms に設定する と、2 倍の速度でトラックを再生し、200 ms に設定すると、0.5 倍の速度でゆっ くり再生する。

トラックの再生時には、スライダとプログレスバーを介してトラックのプログ レスが表示され、ユーザーは手動でプログレスバーをドラッグしてトラックを操 作することもできる。

カットヘッドをクリックすると、スライダが位置する前の軌跡を削除し、カット テールをクリックすると、スライダが位置する後の軌跡を削除することができる。

軌跡記録の時間区間は 2'~5'である。

	机械臂示教在	线编程 设置 扩展 系统信息	关于
工程	新建轨迹	GR	Q 1 Q
过程	开始完成		
条件	请输入轨迹名称	保存	
	5		-1.1
	track best		
变量配置	track_test		
记录轨迹			
			-
		tn#	
			i@ ▼ 100ms
状态	*/////	[0] MAR 7	00:00:00.0/00:00:00.0
脚本	煎切头部 前切尾部	移动到准备占 移动到这	里 运行 停止
		12 - 12 kg / kg	

図 11-66 トラックレコード

11.8.1 トラック記録コマンドを呼び出す (Record Track)

Record Track コマンドはトラック再生コマンドです

- ▶ 新規または開くプロジェクトファイル、ツールバーで詳細条件を選択する
- プロパティウィンドウで Record Track をクリックし、エンジニアリングロジ ックで Record Track をクリックします
- 右側のプロパティウィンドウでトラックアイコンを選択し、確認ボタンをクリックすると、トラックレコードをエンジニアリングロジックにロードできる。

V4.5.11

		记录轨迹条件	
- S			
track_test			
间隔时间 💌 100m	25	2	
运动到准备占参数			
关节1速度	•	50 % 共享速度	度 (1~150)°/s
关节1加速度	•	50 % 共享加速	度 (1~150)°/s^2
刷新		移除	

図 11-67 トラックレコードコマンドを呼び出す

- ▶ 間隔時間: トラック記録時間の単位は各路点 100 ms で、間隔時間の意味は どのくらいの時間でこの 100 ms を再生するか、例えば間隔時間を 50 ms に 設定すると、2 倍の速度でトラックを再生し、200 ms に設定すると、0.5 倍 の速度でゆっくり再生する。
- 界面下側から準備点まで運転するパラメータ入力ボックスは、アームが準備 点まで移動する際の各関節の速度及び加速度を設定することができる。修正 後は確認ボタンをクリックしてください。
- ファイル更新ボタンに更新をクリックして、現在のファイル保存ディレクト リを検索し、表示ファイルの変更を更新します。
- ▶ プロジェクトロジックの Track _レコード命令。

11.9 変数の構成

変数設定は現在、bool、int、double、pose タイプの変数のみをサポートしていま す。テーブルには、変数名、変数タイプ、グローバル保持、変数値など、現在設 定されているすべての変数のリストが表示されます。表の変数を選択します。こ の変数情報は、下の変数タイプドロップダウンリスト、変数名入力ボックス、変 数値選択/入力オプションに表示されます。

bool: true/falseの変数値を持つ bool 型変数を定義し、変数値をクリックしてオプ ションを割り当てます。

int:変数値が整数であり、変数値の後にセルに代入値を入力する整数変数を定義 します。

double:2 精度浮動小数点数の値を持つ2 精度型変数を定義し、変数値の後にセル に代入値を入力します。

pose: 変数値がロボットルートポイント情報である位置型変数を定義し、変数値 セルの後方にある【ルートポイントを設定】ボタンをクリックし、ロボットティ ーチングインタフェースにジャンプし、ルートポイントの設定が完了したら【確 認】をクリックし、変数の割り当てを完了する。変数 poseの表示形式は3組(計 13 ビット)のデータで、その中の前3ビットは位置パラメータで、単位はメー トルで、中間4ビットは姿勢パラメータで、四元数方式で表示して、単位はラジ アンで、後6ビットは6つの関節パラメータで、単位はラジアンである。位置パ ラメータと姿勢パラメータのみを提供するか、関節パラメータのみを提供するこ とができる。同時に提供する場合、関節パラメータは優先的に使用され、提供し ないパラメータは数値0で置換する必要がある。

グローバル保持: グローバル保持をチェックすると、プログラムが再実行された ときも変数値が追加されたときの初期値のままであるなど、変数値をデータベー スに硬化することを示します。

V4.5.11

	变	量配置	
名称	类型	全局保持	值
		5	
		19	
类型 bool	▲ 全局保持	名称	3
值	• false	🔾 t	rue
		45.24	

図 11-68 変数の構成

- 変数を追加して変数タイプを選択すると、変数値オプションに対応するタイ プの入力オプションボックスが表示されます。変数名と変数値を入力し、「追 加」をクリックします。追加に成功すると、新しく追加された変数がリスト の下部に表示されます。注:変数名は一意である必要があり、数字、文字、 アンダースコアのみを含めることができる。保存に失敗し、ポップアップメ ッセージが表示されます。
- 変数を変更して、表の中で変数を選択します。このとき、変数の情報はすべて下の操作領域に表示されます。変更をクリックして変数名と変数値を変更することができる。注意:変数タイプは変更できません。そうしないと、ポップアッププロンプトが失敗します。変数名は変更をサポートしていますが、既存のプロジェクトファイルですでに使用されている場合、では、プロジェクトを再ロードするときにのみ、古い変数名に使用する条件が未定義であることを求めるプロンプトが表示されます。変数名を変更するには、未知の問題が発生しないようにプロジェクトを再ロードしてからプロジェクトを実行する必要がある。
- 交数を削除し、テーブルで変数を選択し、削除をクリックして変数を削除し ます。注意: 変数を削除するのは変数を修正するのと同じで、削除後、既存 のプロジェクトファイルで変数が使用されていた場合、プロジェクトを再ロ ードするときにのみ、その変数に使用する条件が未定義であることを求める プロンプトが表示されます。変数を削除した後は、未知の問題が発生しない

ようにプロジェクトを再ロードしてからプロジェクトを実行する必要がある。

11.10 タイマ

タイマーは、プロジェクトファイルがノードに実行されるまでの時間と回数を 記録します。運動中にアームが必要とする時間を測定することができる。

11.10.1タイマの挿入 (Timer)

Timer コマンドはタイミングコマンドで、プロジェクトファイル内のノードの実 行時間を測定できる。

- ニックネームの右側にある空白の入力ボックスをクリックすると、コマンド 名を変更できる。
- 選択した行コメントコマンドを削除するには、「削除」をクリックします。
- ▶ ステータス設定を確認して保存するには、をクリックします。

	Timer 🕯	条件
昵称	Timer	(X)
	移除	确认

図 11-69Timer 条件

11.10.2タイマー状態表示

メニューバーはオンラインプログラミングを選択し、ツールバーはステータス-タイマーを選択し、タイマーのステータス表示を表示できる。

L程 VM Timer 条件状态 建程 ● Project_Program 一 一 一 一 一 一 1 条件 ● Cop ● Cop ● Cop 1 0.002s 1 ● Cop ● Cop ● Cop 1 0.002s 1 ● Cop ● Cop ● Cop 1 1 1 1 ● Cop ● Cop ● Cop 1		机械留示教在	线编程 设置 扩展	系统信息 关于		
第一日 次 122 1 第件 1 ※ Loop 1 ※ MoveLine 1 ※ MoveLine 1 ※ MoveLine 1 ※ MoveLine 1 ※ Waypoint 3.4625 2 ※ Waypoint ※ Waypoint 1 ※ Waypoint ※ Waypoint 7.8915 2 ※ Waypoint ※ Waypoint 1 7.8925 3 ※ Waypoint ※ Waypoint 1 12.3225 4 ※ Waypoint ※ Waypoint 1 12.3225 4 ※ Waypoint ※ Waypoint 1 16.7615 4 ※ Waypoint ※ Waypoint 1 16.7625 5 ※ Waypoint ※ Waypoint 1 1 16.7625 5 ※ Waypoint ※ Waypoint 1 1 1 1 1 ※ Waypoint ※ Waypoint ※ Waypoint 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th>工程</th> <th>test V^></th> <th></th> <th>Timer 条</th> <th>件状态</th> <th></th>	工程	test V^>		Timer 条	件状态	
建程 「 ● Loop 1 案件 ○ Timer1 0.002s 1 第件 ○ MoveLine Timer2 3.461s 1 ○ Waypoint ○ Waypoint ○ Waypoint 2 2 ○ Waypoint ○ Waypoint ○ Waypoint 3 3 ○ Waypoint ○ Waypoint ○ Waypoint 3 3 ○ Waypoint ○ Waypoint 100% 1 12.322s 4 Timer2 16.761s 4 4 4 Timer2 11.88s 5 5 Timer2 21.188s 5 5 Timer1 25.623s 6 6 Timer2 30.058s 7 7 Timer1 30.059s 8 7 Timer2 34.498s 8 0.002s		🔻 🤣 Project_Program	昵称	时间	8)	次
Timer1 3.461s 1 ご MoveLine ご MoveLine Timer2 3.461s 1 ご MoveLine ご MoveLine Timer2 7.891s 2 ご Waypoint © Waypoint Timer2 7.891s 2 ご MoveCir © Waypoint Timer2 12.321s 3 ご Waypoint © Waypoint Timer2 16.761s 4 ご Waypoint © Waypoint Timer2 16.761s 4 ご Waypoint © Waypoint Timer2 11.88s 5 Timer2 25.623s 6 6 1 Timer2 30.058s 7 1 1 Timer1 30.059s 8 1 1 Sainesi 100% Timer1 3.461s Timer2 0.002s	过程	🔹 👻 Loop	Timer1	0.00	2s	1
Waypoint Timer1 3.462s 2 Waypoint Waypoint Timer2 7.891s 2 Waypoint Waypoint Timer2 12.321s 3 Waypoint Waypoint Timer2 16.761s 4 Waypoint Waypoint Timer2 16.761s 4 Waypoint Waypoint Timer2 16.761s 4 Waypoint Timer2 11.88s 5 Timer2 25.623s 6 6 Timer1 25.624s 7 Timer2 30.058s 7 Timer1 30.059s 8 Timer2 34.498s 8	条件	Timer1		3.46		
Em Waypoint Way	antis	Waypoint	Timer1	3.46	25	2
* ② ReadyPoint Timer1 7.8925 3 * ③ Waypoint ③ Waypoint 3 1 * ○ MoveCir ○ Waypoint 12.3225 4 ○ Waypoint ○ Waypoint 11.7615 4 ○ Waypoint ○ Waypoint 16.7615 4 ○ Waypoint ○ Waypoint 11.1885 5 ○ Timer2 11.1885 5 Timer1 12.56235 6 Timer2 30.0585 7 Timer1 30.0595 8 Timer2 34.4985 8	尼賞	- Waypoint	Timer2	7.89	15	2
● Waypoint Timer2 12.3215 3 ● MayeOint ● Waypoint 12.3225 4 ● Waypoint ● Waypoint 11.32225 4 ● Waypoint ● Waypoint 11.3225 4 ● Waypoint ● Waypoint 11.3225 4 ● Waypoint ● Waypoint 11.3225 5 ● Waypoint ● Waypoint 11.3225 5 ● Timer2 11.67625 5 ■ Timer2 21.1885 5 ■ Timer2 25.6235 6 ■ Timer2 30.0585 7 ■ Timer2 30.0585 7 ■ Timer2 34.4985 8	计态	ReadyPoint	Timer1	7.89	2s	3
本 MoveCir Timer1 12.3225 4 Timer2 16.7615 4 Timer2 16.7615 5 Timer2 21.1885 5 Timer2 21.1885 5 Timer2 21.1885 6 Timer2 25.6235 6 Timer1 25.6245 7 Timer2 30.0585 7 Timer1 30.0595 8 Timer2 34.4985 8 Timer2 34.4985 8	in age	- 🥹 Waypoint	Timer2	12.32	215	3
Waypoint Waypoint	夏量状态	V O MoveCir	Timer1	12.32	225	4
Waypoint Timer1 16.7625 5 Waypoint Timer2 21.1885 5 Timer2 21.1895 6 Timer2 25.6235 6 Timer1 25.6245 7 Timer2 30.0585 7 Timer1 30.0595 8 Timer2 34.4985 8	自时間	- Waypoint	Timer2	16.70	61s	4
Timer2 21.188s 5 Timer2 21.188s 5 Timer1 21.189s 6 Timer2 25.623s 6 Timer1 25.624s 7 Timer2 30.058s 7 Timer1 30.059s 8 Timer2 34.498s 8 近动限制 100% Timer1 3.461s Timer2 0.002s		- Waypoint	Timer1	16.70	62s	5
Timer1 21.189s 6 Timer2 25.623s 6 Timer1 25.624s 7 Timer2 30.058s 7 Timer1 30.059s 8 Timer2 34.498s 8 Timer1 3.461s Timer2 0.002s	方真	Timer2	Timer2	21.18	88s	5
Timer2 25.623s 6 Timer1 25.624s 7 Timer2 30.058s 7 Timer1 30.059s 8 Timer2 34.498s 8 近动限制 100% Timer1 3.461s Timer2 0.002s			Timer1	21.18	89s	6
Timer1 25.624s 7 Timer2 30.058s 7 Timer1 30.059s 8 Timer2 34.498s 8 Timer1 3.461s Timer2			Timer2	25.62	23s	6
Timer2 30.058s 7 Timer1 30.059s 8 Timer2 34.498s 8 近动限制 100% Timer1 3.461s Timer2 0.002s			Timer1	25.62	24s	7
Timer1 30.059s 8 近动限制 100% Timer2 34.498s 8 Timer1 3.461s Timer2 0.002s			Timer2	30.05	58s	7
Timer2 34.498s 8 运动限制 100% Timer1 3.461s Timer2 0.002s			Timer1	30.05	59s	8
运动限制 100% Timer1 3.461s Timer2 0.002s			Timer2	34.49	98s	8
		运动限制 100%	Timer1	3.461s	Timer2	0.002s
	脚本	开始 师止 单步	N-3 (cd) (cd) (b)(6)	5.4550005	/HE POS	

図 11-70 Timer 条件状態

- ニックネームは、エンジニアリングファイル内のコマンド名に対応します。
- 時間は、プログラムの開始点がこの Timer コマンドを実行するのにかかった \triangleright 時間です。
- 回は、この Timer コマンドがプログラムファイルで実行された回数を表しま す。
- ▶ Timer 1 および Timer 2 は、ある Timer コマンドが選択されている場合に表 示される対応時間です。
- ▶ 時間間隔は、選択した Timer 距離の前の選択した Timer の時間間隔です。
- ▶ 注意: timer 1 と timer 2 の表示はクリックリスト中の条件名の順序と関係が あり、ボタン表示グレーを基準とし、time 名の表示順序とは関係がない。

11.11 シミュレーションモデル

シミュレーションモデルはシミュレーションタブで、起動をクリックしてプロ グラムを実行すると、自動的にエンジニアリングログインタフェースに切り替わ ります。シミュレーションをクリックすると、自動的にシミュレーションモデル タブに切り替わります。インタフェースは主に2つの部分を含み、インタフェー ス中部は3Dシミュレーションウィンドウ、インタフェース下部はロボット運動 パラメータである。

3D シミュレーションウィンドウにはロボット 3D モデルがあり、モデルはプロ グラムに基づいて動作し、モデルの動作は実際のロボットと一致している。

ユーザは表示軌跡をチェックすることができ、シミュレーションウィンドウで 末端の動き軌跡を見ることができ、軌跡の持続時間を設定することで、軌跡表示 の時間を規定することもできる。

インタフェース下部には、位置パラメータ XYZ、姿勢パラメータ RX RY RZ を 含む、選択対象及び参照系に応じてロボットの運動パラメータを動的に表示する ことができる。

[ターゲット](Target)ドロップダウンメニューでは、ビットポーズを表示するター ゲットがフランジ重心(既定値)または指定した tool 終端機能を選択できる。ユ ーザーは、10.4.2 ツールの定格の章を参照してください。

参照系ドロップダウンメニューはターゲットが参照する座標系を表し、ユーザ ーはエラー!参照元が見つかりません。エラー!参照元が見つかりません。の章 を参照してください。

位置パラメータの XYZ は、選択した座標系(基底座標系、終端座標系、ユーザ カスタム座標系)におけるツールフランジの中心点(選択したツール座標系)の 座標を表します。

姿勢パラメータにおける RX、RY、RZ は、選択座標系に対して回転する角度値 を表し、選択座標系を一定の順序で3回回転した方位の記述である。

図 11-71 シミュレーションモデル

R:実際の路点モデルを表し、クリックすると隠すことができる

●: ユーザー座標系を表し、クリックすると隠すことができる

11.12 プロジェクトログ

エンジニアリングログには、リアルタイムのエンジニアリング実行状況を表示 できる。クリックしてプログラムを実行すると、自動的にエンジニアリングログ インタフェースに切り替わります。

図 11-72 プロジェクトログ

11.13 スクリプトファイル

メニューバーはオンラインプログラミングを選択し、ツールバーはスクリプト を選択し、スクリプトファイルの編集、新規作成、ロード、保存処理を行うこと ができる。注意:スクリプトファイルを編集するときは LUA 構文に合う必要が あり、そうしないとスクリプトファイルを保存できません。具体的な使用方法に ついては、スクリプトのマニュアルを参照してください。

	机械臂示教 在线编程 设置 扩展 系统信息 关于
工程	编辑
过程	L untitled.aubo
条件	
配置	
状态	
脚本	
编辑	
新建	
加载	
保存	
全部关闭	

図 11-73 スクリプトファイル
V4.5.11

付録

用語

0 類停止: ロボットの電源が切られると、ロボットはすぐに動作を停止します。これは制 御不能な停止であり、各関節が最速で制動するため、ロボットがプログラム設定された経 路から外れる可能性がある。この保護停止は、セキュリティ評定の限界を超えた場合、ま たは制御システムのセキュリティ評定部分にエラーが発生した場合に使用することがで きる。詳細については、EN ISO 13850: 2008 または IEC 60204-1: 2006 を参照してくださ い。

1 類停止: ロボットに電力を供給して停止させると、ロボットは停止し、ロボットが停止 を実現したら電源を切る。これは制御可能な停止であり、ロボットはプログラミングされ た経路に従うことができる。1 秒後またはロボットが止まったら電源を切ります。詳細に ついては、EN ISO 13850: 2008 または IEC 60204-1: 2006 を参照してください。

2 類停止: ロボット通電時の制御可能性停止。ロボットは1秒ですべての動作を停止しま す。安全評定制御システムの操作により、ロボットは停止した位置に留まることができる。 詳細については、IEC 60204-1: 2006 を参照してください。

診断カバレッジ (DC): 評価されたパフォーマンスレベルを達成するために実施される診 断の有効性を測定するために使用されます。詳細については、EN ISO 13849-1:2008 を参 照してください。

インテグレータ:インテグレータとは、ロボットが最終的に取り付けられる機構を設計することです。インテグレータは、最終的なリスク評価を行う責任があり、最終的なインストールが現地の法令に準拠していることを確認する必要がある。

平均危険失効時間 (MTFd): 平均危険失効時間 (MTFd) とは、評価された性能レベルを 達成するために計算し、検出した値を指す。詳細については、ENISO 13849-1:2008 を参照 してください。

リスク評価: リスク評価は、すべてのリスクを特定し、適切なレベルまでリスクを低減す るプロセス全体です。リスク評価は記録アーカイブを行う必要がある。詳細は ISO 12100 を参照してください。

パフォーマンス・レベル:パフォーマンス・レベル (Performance Level、PL) は、制御シ

ステムのセキュリティに関連する各部分が予測可能な条件下でセキュリティ機能を実行 する能力を説明するための分離されたレベルです。PLd は 2 番目に高い信頼性分類であ り、セキュリティ機能がかなり信頼できることを意味します。詳細については、EN ISO 13849-1:2008 を参照してください。

最大動作半径:アームがゼロ姿勢のときのジョイント1の中心点からジョイント6の中 心点までの距離

認証

当社製品 AUBOiシリーズロボットは、第三者認証機関を介して検査評定企業の品質管理 システムとサンプル型式試験を通じて本製品が特定の要求に合致し、基準要求に合致する 製品を持続的に安定的に生産する能力を備えていることを確認し、書面で証明した。次の ように説明します。

➤ AUBO-iシリーズのロボットは複数の国際第三者有名機関の検査と認証を通過し、 EU CE 認証、北米認証、韓国 KCs 認証などを獲得し、製品の安全性は国際的なトッ プレベルに達した。

> AUBO-i5 ロボットは SGS によって認証試験を行い、EU CE 認 証を通過し、製品は EU CE 指令のすべての関連要求に符合す る: 機械命令 (MD) 2006/42/EC 電磁互換性 (EMC) 2014/30/EU EN ISO 10218-1:2011 EN ISO 12100:2010 EN ISO 13849-1:2015 EN 60204-1:2018 EN 61000-6-2:2005 EN 61000-6-4:2007 +A1:2011

(F

AUBO-i 5 ロボットは T 嘆 V S 嘆 D による認証試験を行い、 北米認証を通過し、北米認証基準のすべての関連要求に符合 する: UL 1740:2018 CAN/CSA-Z434-14/R:2019 Supplemented by ANSI RIA R15.06-2012 NFPA 79:2018

AUBO-i5ロボットは韓国の公式機関による認証試験を行い、 韓国 KCs 認証を通過し、韓国の認証基準に関するすべての要 件を満たしている。

V4.5.11

AUBO-i5ロボットは SGS によって認証検査を行い、半導体製 造装置の安全認証を通過し、半導体製造装置の供給業者に対 して規範化された基本的な健康と安全要求の安全基準に符合 する: SEMI-S2-0818Ea

S2-0818Ea

AUBO-i 5 ロボットは SGS によって認証検査を行い、ISO 14644-1: 2015 (E) と 14644-14: 2016 (E) に基づいて、空気 懸濁粒子濃度とクリーンルームレベルの適用性の試験に合格 した。 SG

停止時間と停止距離

クラス0の停止距離と停止時間

次の表に、クラス0の停止をトリガしたときに測定された停止距離と停止時間を示しま す。これらの測定結果は、ロボットの以下の構成に対応しています。

- ▶ 延長: 100% (ロボットアームを完全に水平展開)
- ▶ 速度: 100% (ロボットの一般速度を 100%とし、180 {/sの関節速度で移動)
- ▶ ペイロード: TCP を接続したロボット処理の最大ペイロード(5 kg)

関節0の試験は水平移動によって行われ、すなわち回転軸は地面に垂直である。 関節1と 関節2のテスト中、ロボットは垂直な軌跡、つまり回転軸が地面に平行で、ロボットが下 に移動すると動きが停止します。

	停止距離(rad)	停止時間(ms)
ジョイント0(台	0.21	210
座)		
ジョイント1(肩)	0.60	500
ジョイント2(肘)	0.12	135

V4.5.11

参照規格

ロボットの設計は以下の基準を参考にしてください。

標準	定義#テイギ#
2006/42/EC:2006	Machinery Directive:
	Directive 2006/42/EC of the European Parliament and of the Council
	of 17 May 2006 on machinery, and amending Directive 95/16/EC
	(recast)
2004/108/EC:2004	EMC Directive:
	Directive 2004/108/EC of the European Parliament and of the Council
	of 15 December 2004 on the approximation of the laws of the Member
	States relating to electromagnetic compatibility and repealing Directive
	89/336/EEC
EN ISO 13850:2008	Safety of machinery:
	Emergency stop - Principles for design
EN ISO 13849-1:2008	Safety of machinery:
	Safety-related parts of control systems - Part 1: General principles of
	design
EN ISO 13849-2:2012	Safety of machinery:
	Safety-related parts of control systems - Part 2: Validation
EN ISO 12100:2010	Safety of machinery:
	General principles of design, risk assessment and risk reduction
EN ISO 10218-1:2011	Industrial robots:
	Safety
	Note: Content equivalent to ANSI/RIA R.15.06-2012, Part 1
ISO/TS 15066: 2016	Safety requirements for collaborative industrial robot
	Robots and robotic devices —Collaborative robots

V4.5.11

技術仕様					
ロボットタイプ	AUBO-i5				
自重	24 kg				
可搬重量	5 kg				
リーチ	886.5 mm				
動作範囲	joint1: -360° ~+360° joint2/joint3:-175°~175° joint 4/joint 5: デフォルト -175°~ 175°オプション- 360°~+360° joint6:-360° ~+360°				
関節速度	joint1/joint2/joint3 joint4/joint5/joint6	: 223°/s 5 237°/s			
標準 TCP 速度 位置繰返し精度	$\leq 3.4 \text{ m/s}$ $\pm 0.02 \text{ mm}$				
自由度	6				
IP 等級	IP 54				
コントロールボックス型番	CB-M				
コントロールボックスのサイ ズ(幅 x 奥行 x 高さ)	390mm*370mm*2	265mm			
コントロールボックス重量	15kg				
		コントロールボ ックス	エンド ツール エンド		
	ディジタル入 力	16 (普通) / 16 (セキュリテ イ)	4(適合可 能)		
10 M - F	ディジタル出 力	16 (普通) / 16 (セキュリテ イ)	4(適合可 能)		
	アナログ入力	4	2		
	アナログ出力	4			
I/O 電源	コンドロールホッ V/12 V/24 V 0.8 A	ックスでは 24 V 3 .	A、上兵では 0		
通信プロトコル	Ethernet, Modbus	s - RTU/TCP			
インタフェースと開放性	SDK(C C++ Lua Python 開発対応)、ROS システム、API 対応				
プログラミング	12.5 インチタッラ ックスユーザー・	チスクリーンの AUI インタフェースで行	BOPE グラフィ う		
消費電力(平均)	典型的なプログラ	ラムを実行する場合	·は約 200 W		
共同作業	ISO 10218-1: 201	ISO 10218-1: 2011 による連携			

VI00©2015-2022 AUBO はすべての権利を保持します。

V4.5.11

周囲温度範囲	ロボットは 0~50°C の温度範囲で動作可能
湿度	90%RH (結露なきこと)
電源	100-240 VAC, 50-60 Hz
	アームケーブル (5m)
リーノル	コントロールボックスケーブル(4 m)

有効負荷

上図は腕部有効荷重図であり、横軸dはそれぞれ重心オフセット量を表し、重心オフセット量はツールエンドフランジの中心からツール重心までの距離である。

V4.5.11

アーム取り付け要件

アームバンドには 5 KG の荷重があり、荷重重心は工具先端中心軸線に沿って 100 mm ず れており、正常に動作しており、外部からの衝突は含まれていない。3 つの方法で取り付 け(正装揚重垂直)、アームボルトの各穴位置を固定することを提案し、提供できる最小 耐転覆力の能力を提供すべきである。

インストール方 法	正常に動作	設備緊急停止
フォワードマウ ント	$1554\mathrm{N}\pm360\mathrm{N}$	$1554N \pm 2594N$
リバースマウン ト	$1754\mathrm{N}\pm360\mathrm{N}$	$1754N \pm 2594N$
垂直マウント	$1554\mathrm{N}\pm360\mathrm{N}$	$1554N \pm 2594N$

アラーム情報と一般的な問題の説明

Event Type	イベント タイプ	Message	イベント情報	ポップアップ窓の説明	発生する可能性 のある障害	解決策
Interfaceboard	インタフ ェースプ レート	Diagnosis info: Arm canbus error, code: 0x%1	診断情報: アーム CAN 通信エラー、エラーコ ード: 0 x%1	0×01: ベース 0×02: ジョイント1 0×04: ジョイント2 0×08: ジョイント3 0×10: ジョイント4 0×20: ジョイント5 0×40: ジョイント6 0x80: 末端	can 通信エラー	モジュール間の CAN バス接続を 確認する
Interfaceboard	インタフ ェースプ レート	Diagnosis info: Remote Halt	診断情報: リモートシ ャットダウン入力が有 効	ヒント情報	/	1
Interfaceboard	インタフ ェースプ レート	Diagnosis info: Remote Emergency Stop	診断情報:急停止入力 信号有効	ヒント情報	/	/
Interfaceboard	インタフ ェースプ レート	Diagnosis info: Enter force control mode, disable UI	診断情報: ロボットが ドラッグティーチング 状態に入ると、インタ フェース操作が禁止さ れます	ヒント情報	/	/

エラー![ホーム] タブを使用して、ここに表示する文字列に 标题 を適用してください。|エラー![ホーム] タブを使用して、ここに表示する文字列に 副标题 を適用してくだ さい。 V4.5.11

Event Type	イベント タイプ	Message	イベント情報	ポップアップ窓の説明	発生する可能性 のある障害	解決策
Interfaceboard	インタフ ェースプ レート	Diagnosis info: Exit Force Control	診断情報: ドラッグテ ィーチングモードを終 了する	ヒント情報	/	/
Interfaceboard	インタフ ェースプ レート	Diagnosis info: Enter linkage slave mode, disable Ul	診断情報: 連動モード (スレーブとして)に 入り、インタフェース 操作を禁止する	ヒント情報(コント ロールボックス操作 パネルのティーチン グ有効化スイッチを 押す)	/	/
Interfaceboard	インタフ ェースプ レート	Diagnosis info: Enter linkage master mode	診断情報:連動モード に入る(ホストとし て)	ヒント情報(ポップ アップコントロール ボックス操作パネル のティーチング有効 化スイッチ)	/	/
Interfaceboard	インタフ ェースプ レート	Diagnosis info: Soft Emergency	診断情報:ソフト急停 止(ティーチ緊急停止 ボタンが押された)	ヒント情報	/	/
Interfaceboard	インタフ ェースプ レート	Diagnosis info: Arm Power Off	診断情報:アーム本体 の電源オフ	ヒント情報	コンタクト切 断	接触器に問題が ないかどうかを 検査する
Interfaceboard	インタフ ェースプ レート	Diagnosis info: Mounting Pose Changed	診断情報:アーム本体 取り付け位置が変化	ヒント情報	アーム本体の 取り付け状態 を確認する必 要があり、確 認しないと飛	アーム本体の取 り付け状態を確 認する必要があ る

Event Type	イベント タイプ	Message	イベント情報	ポップアップ窓の説明	発生する可能性 のある障害	解決策
					車の可能性が ある	
Interfaceboard	インタフ ェースプ レート	Diagnosis info: Joint angle exceeds limit	診断情報:関節位置が 制限を超えている(ハ ードリミット)	障害情報	アームが動か ない	アフターサービ スに連絡してリ セットする必要 がある
Interfaceboard	インタフ ェースプ レート	Diagnosis info: Encoder Error	診断情報: エンコーダ エラー	ハードウェア障害	アームの電源 が入らない、 関節モジュー ルのハードウ ェア障害	ハードウェアの 問題、関節回路 基板の交換また は修理が必要
Interfaceboard	インタフ ェースプ レート	Diagnosis info: Encoder Lines Error	診断情報:エンコーダ 線数エラー	ハードウェア障害	アームの電源 が入らない、 関節モジュー ルのハードウ ェア障害	ハードウェアの 問題、関節回路 基板の交換また は修理が必要
Interfaceboard	インタフ ェースプ レート	Diagnosis info: Singularity Overspeed	参断情報:関節の速度 超過(実際の速度また は目標速度が物理的制 限を超えている)	ヒント情報	ちょくせつて いしこうじ	アフターサービ スの問い合わせ 確認はソフトウ ェアまたはハー ドウェアの問題

Event Type	イベント タイプ	Message	イベント情報	ポップアップ窓の説明	発生する可能性 のある障害	解決策
Interfaceboard	インタフ ェースプ レート	Diagnosis info: Current Alarm	診断情報:アーム電源 電流エラー	障害情報	アームが有効 にならない	アフターサービ スへの連絡
Toolio Error	ツール端 IO エラ ー	Toolio Error	ツール端 IO エラー	障害情報	アームが有効 にならない	アフターサービ スへの連絡
Teachpendant	ティーチ ングソフ トウェア	SDK Socket Disconnected. Need to Restart	SDK インタフェース呼 び出しブロック、シス テム再起動が必要	ソフトウェア障害	ティーチング ソフトウェア の再起動	最新バージョン のソフトウェア のアップグレー ド
Robot Controller	コントロ ーラソフ トウェア	Joint tracking is lost	関節追跡誤差が大きす ぎる	ヒント情報	アームのパワ ーダウン	アームの運転速 度を下げ、軌道 運動軌跡を最適 化する。
Robot Controller	コントロ ーラソフ トウェア	No real robot found, disable IO settings	実際のアームが見つか りませんでした。IO 設 定を無効にします	ヒント情報	リアルアーム を接続できま せん	ネットワーク構 成をチェック し、必要に応じ てネットワーク を初期化する
Robot Controller	コントロ ーラソフ トウェア	Mac communication with interfaceboard failed, disable IO settings	インターフェースボー ドとの通信に失敗し、 IO 設定が無効になりま す	ヒント情報	リアルアーム を接続できま せん	ネットワーク構 成をチェック し、必要に応じ てネットワーク を初期化する

Event Type	イベント タイプ	Message	イベント情報	ポップアップ窓の説明	発生する可能性 のある障害	解決策
						FAE に連絡し て、インタフェ ースボードまた はマザーボード が破損していな いかどうかを確 認します
Teachpendant	ティーチ ングソフ トウェア	Load script file fail, please check the log	スクリプトファイルの ロードに失敗しまし た。ログを表示してく ださい	ヒント情報	スクリプトフ ァイルを実行 できませんで した	スクリプト内容 の確認
Teachpendant	ティーチ ングソフ トウェア	Load Script File Fail, function/loop/while/for/if/ switch condition is too long, please split too long conditions	スクリプトファイルの ロードに失敗しまし た。 function/loop/while/for/i f/switch などの条件が長 すぎます。分割してく ださい	ヒント情報	/	/
Teachpendant	ティーチ ングソフ トウェア	Call SDK interface error, please check the log	SDK インタフェースの 呼び出しに失敗しまし た。ログを確認してく ださい	ヒント情報	運動関数は使 用できません	運動関数の構成 エラーによるロ グのチェック

エラー![ホーム] タブを使用して、ここに表示する文字列に 标题 を適用してください。|エラー![ホーム] タブを使用して、ここに表示する文字列に 副标题 を適用してくだ さい。 V4.5.11

Event Type	イベント タイプ	Message	イベント情報	ポップアップ窓の説明	発生する可能性 のある障害	解決策
Teachpendant	ティーチ ングソフ トウェア	Safety Event: Enter safety mode by tristate switch, can not run the project.	安全イベント: 三状態 スイッチによる安全停 止状態	ヒント情報	/	/
Teachpendant	ティーチ ングソフ トウェア	Safety Event: Enter safety mode by external safety IO, can not run the project.	セキュリティイベン ト: セキュリティ停止 入力によるセキュリテ ィ停止状態	ヒント情報	1	/
Teachpendant	ティーチ ングソフ トウェア	Safety Event: Enter safety mode by linked IO, can not run the project.	セキュリティイベン ト:連動IOでセキュリ ティモードに入り、エ 事を実行できない。	ヒント情報	1	/
Teachpendant	ティーチ ングソフ トウェア	Safety Event: Enter collision, can not run the project.	セキュリティイベン ト: 衝突停止状態にな り、プロジェクトを実 行できません	ヒント情報	/	/
Robot Controller	コントロ ーラソフ トウェア	Power On Failed	ロボットの電源投入に 失敗しました	ヒント情報	/	アフターサービ スへの連絡
Robot Controller	コントロ ーラソフ トウェア	Release brake failed	ブレーキを緩めること に失敗した	ヒント情報	/	アフターサービ スへの連絡
Robot Controller	コントロ ーラソフ トウェア	Forbid power-on robot in safeguard stop mode	安全停止モードでのロ ボットへの電源投入禁 止	ヒント情報	1	安全停止解除関 連信号

Event Type	イベント タイプ	Message	イベント情報	ポップアップ窓の説明	発生する可能性 のある障害	解決策
Robot Controller	コントロ ーラソフ トウェア	Robot shutdown in progress	ロボットはシャットダ ウン中です	ヒント情報	/	/
Teachpendant	ティーチ ングソフ トウェア	Stop Program refused, because program is stopping	プログラムは停止中で あり、停止プログラム 命令は拒否された	ヒント情報	/	/
Teachpendant	ティーチ ングソフ トウェア	Stop Program refused, because program stopped	プログラムが停止し、 停止プログラム命令が 拒否された	ヒント情報	/	/
Teachpendant	ティーチ ングソフ トウェア	Execute Commond failed because some command is executing	ディレクティブが実行 中で、現在のディレク ティブの実行に失敗し ました	ヒント情報	1	/
Teachpendant	ティーチ ングソフ トウェア	Execute Commond failed because command was executed	命令は実行されました	ヒント情報	/	/
Teachpendant	ティーチ ングソフ トウェア	Loading language	ロ <i>ー</i> ディング言語進行 中	ヒント情報	/	/
Teachpendant	ティーチ ングソフ トウェア	Load language finished	ーーディング言語の完 了	ヒント情報	/	/

エラー![ホーム] タブを使用して、ここに表示する文字列に 标题 を適用してください。|エラー![ホーム] タブを使用して、ここに表示する文字列に 副标题 を適用してくだ さい。 V4.5.11

Event Type	イベント タイプ	Message	イベント情報	ポップアップ窓の説明	発生する可能性 のある障害	解決策
Robot Controller	コントロ ーラソフ トウェア	Please wait for robot to stop	ロボットが停止するの を待ってから操作して ください	ヒント情報	/	/
Robot Controller	コントロ ーラソフ トウェア	Over speed protect	ロボットの速度超過保 護	ヒント情報	1.アームの電源 オフ	アラーム解除 ドラッグして速 度を落とす
Robot Controller	コントロ ーラソフ トウェア	Singularity warning caused by ik failure	特異点警告(キネマテ ィック逆解に失敗)	ヒント情報	/	アラーム解除
Robot Controller	コントロ ーラソフ トウェア	Online track planning failed	オンライン軌道計画に 失敗しました	オンライン軌道計画 に失敗しました	不規則運動	軌道の再計画
Robot Controller	コントロ ーラソフ トウェア	Offline track planning failed	オフライン軌跡計画に 失敗しました	オフライン軌跡計画 に失敗しました	不規則運動	軌道の再計画
Robot Controller	コントロ ーラソフ トウェア	Robot status exception	ロボット状態異常、イ ンターフェースボード 診断情報を見ることが できる	状態異常、運動不能	状態異常、不 規則運動	 軌道の再計画 各種アラームが 解除されたこと を確認し、ティ ーチと SDK が混 在しているかど うかを判断する

Event Type	イベント タイプ	Message	イベント情報	ポップアップ窓の説明	発生する可能性 のある障害	解決策
Robot Controller	コントロ ーラソフ トウェア	Track Play Interrupt Track record can not be paused and stopped	記録されたトラックは 一時停止または停止で きません	ヒント情報	/	/
Teachpendant	ティーチ ングソフ トウェア	Run to ready point error Make sure the project is loaded and then run to the ready position	準備ポイントに移動で きませんでした。プロ ジェクトがロードされ ていることを確認して ください	ヒント情報	/	/
Teachpendant	ティーチ ングソフ トウェア	Run to ready point error: Make sure the project is stopped and then run to the ready position	準備ポイントに移動で きませんでした。プロ ジェクトが停止してい ることを確認してくだ さい	ヒント情報	/	/
Teachpendant	ティーチ ングソフ トウェア	Running Project Error: Make sure the project is stopped before run project	プロジェクトの実行に 失敗しました。その前 にプロジェクトが停止 していることを確認し てください	ヒント情報	/	/
Teachpendant	ティーチ ングソフ トウェア	Running Project Error: Enter the safety mode, unable to run project.	安全停止モードに入 り、プロジェクトを実 行できませんでした	ヒント情報	/	/
Teachpendant	ティーチ ングソフ トウェア	Pause Project Error: Make sure the project is running before pause project	工事の一時停止に失敗 しました。工事が実行	ヒント情報	1	/

エラー![ホーム] タブを使用して、ここに表示する文字列に 标题 を適用してください。|エラー![ホーム] タブを使用して、ここに表示する文字列に 副标题 を適用してくだ さい。 V4.5.11

Event Type	イベント タイプ	Message	イベント情報	ポップアップ窓の説明	発生する可能性 のある障害	解決策
			されていることを確認			
			してください			
	ティーチ	Continue Project Error:	運転再開に失敗しまし			
Taachaandant		Make sure the project is	た。工事が中断されて	レント桂却	1	1
reachpendant		paused before continue	いることを確認してく		/	/
		project	ださい			
	- , -	Slowly Stop Project Error:	徐行工事が失敗しまし			
-	「アイーナ	Make sure the project is	た。工事が実行されて		1	
leachpendant	ンクソノ トウェア	running before stop	いることを確認してく	ヒント 情報 		/
		project	ださい			
Teachpendant	ティーチ ングソフ トウェア	Load Program Error: Make sure the program is stopped before load program	プロジェクトのロード に失敗しました。現在 のプロジェクトが停止 していることを確認し てください	ヒント情報	1	/
Teachpendant	ティーチ ングソフ トウェア	SDK Interface blocked, need to restart	SDK インタフェース呼 び出しブロック、シス テム再起動が必要	ヒント情報	/	ログをコピー し、アフターサ ービスに連絡す る
Interfaceboard	インタフ ェースプ レート	Safety IO Event: Run to ready position	セキュア IO イベント: 準備ポイントに移動	ヒント情報	/	/

Event Type	イベント タイプ	Message	イベント情報	ポップアップ窓の説明	発生する可能性 のある障害	解決策
Interfaceboard	インタフ ェースプ レート	Safety IO Event: Run program	セキュリティ IO イベン ト:エンジニアリング の実行	ヒント情報	/	/
Interfaceboard	インタフ ェースプ レート	Safety IO Event: Pause program	安全 IO イベント:工事 一時停止	ヒント情報	/	/
Interfaceboard	インタフ ェースプ レート	Safety IO Event: Continue program	セキュア IO イベント : 運転再開	ヒント情報	/	/
Interfaceboard	インタフ ェースプ レート	Safety IO Event: Slowly stop program	安全 IO イベント:工事 停止	ヒント情報	/	/
Interfaceboard	インタフ ェースプ レート	Safety IO Event: Enter reduced mode	セキュア IO イベント : 縮小モード に入る	ヒント情報	/	/
Interfaceboard	インタフ ェースプ レート	Safety IO Event: Release reduced mode	セキュア IO イベント : 縮小モードを終了する	ヒント情報	/	/
Interfaceboard	インタフ ェースプ レート	Safety IO Event: Enter the safety mode by external safety stop DI	安全 IO イベント:安全 停止モードに入る(IO トリガ)	ヒント情報	/	/
Interfaceboard	インタフ ェースプ レート	Safety IO Event: Enter the safety mode by tri state switch	安全 IO イベント:安全 停止モードに入る(三 状態スイッチトリガ)	ヒント情報	/	/

エラー![ホーム] タブを使用して、ここに表示する文字列に 标题 を適用してください。|エラー![ホーム] タブを使用して、ここに表示する文字列に 副标题 を適用してくだ さい。 V4.5.11

Event Type	イベント タイプ	Message	イベント情報	ポップアップ窓の説明	発生する可能性 のある障害	解決策
Interfaceboard	インタフ ェースプ レート	Safety IO Event: Enter the safety mode, please manually release the external safety stop DI	安全 IO イベント:安全 停止モード に入り、安 全停止入力により手動 で安全停止モードを解 除してください	ヒント情報	/	/
Interfaceboard	インタフ ェースプ レート	Safety IO Event: Manually release safety mode	安全 IO イベント:安全 停止モード を手動で解 除する	ヒント情報	/	/
Interfaceboard	インタフ ェースプ レート	Safety IO Event: Automatically release safety mode	安全 IO イベント:安全 停止モードの自動解除	ヒント情報	/	/
Interfaceboard	インタフ ェースプ レート	Safety IO Event: Remote clear alarm signal	安全 IO イベント:リモ ートクリアアラーム信 号	ヒント情報	/	/
Interfaceboard	インタフ ェースプ レート	Safety IO Event: start run to ready position	セキュア IO イベント: 準備ポイントまで運転 開始	ヒント情報	/	/
Interfaceboard	インタフ ェースプ レート	Safety IO Event: stop run to ready position	セキュア IO イベント: 準備ポイントへの運転 停止	ヒント情報	/	/
Interfaceboard	インタフ ェースプ レート	Error throw: Joint encoder pollution	エラースロー: ジョイ ントエンコーダが汚染 されている	ハードウェア障害	/	アフターサービ スへの連絡

Event Type	イベント タイプ	Message	イベント情報	ポップアップ窓の説明	発生する可能性 のある障害	解決策
Interfaceboard	インタフ ェースプ レート	Error throw: Joint collision	エラースローえらース ロー:ジョイントの衝突 じょいんとのしょうと つ	ヒント情報	/	/
Interfaceboard	インタフ ェースプ レート	Error throw: Hardware error	エラースロー: ハード ウェアエラー	ハードウェア障害	/	アフターサービ スへの連絡
Interfaceboard	インタフ ェースプ レート	Error throw: Joint error	エラースロー: ジョイ ントエラー	ハードウェア障害	/	アフターサービ スへの連絡
Interfaceboard	インタフ ェースプ レート	Error throw: Joint overcurrent	エラースロー: 関節電 流オーバーラン	ハードウェア障害	/	アフターサービ スへの連絡
Interfaceboard	インタフ ェースプ レート	Error event: Joint overvoltage	エラースロー: 関節電 圧オーバーラン	ハードウェア障害	/	アフターサービ スへの連絡
Interfaceboard	インタフ ェースプ レート	Error throw: Joint undervoltage	エラースロー: 関節電 圧が低すぎる	ハードウェア障害	/	アフターサービ スへの連絡
Interfaceboard	インタフ ェースプ レート	Error throw: Joint over temperature	 エラースロー: ジョイ ント温度が高すぎる	ハードウェア障害	/	アフターサービ スへの連絡

エラー![ホーム] タブを使用して、ここに表示する文字列に 标题 を適用してください。|エラー![ホーム] タブを使用して、ここに表示する文字列に 副标题 を適用してくだ さい。 V4.5.11

Event Type	イベント タイプ	Message	イベント情報	ポップアップ窓の説明	発生する可能性 のある障害	解決策
Interfaceboard	インタフ ェースプ レート	Error throw: Joint hall error	エラースロー: ジョイ ントホールセンサーエ ラー	ハードウェア障害	/	アフターサービ スへの連絡
Interfaceboard	インタフ ェースプ レート	Error throw: Joint encoder error	エラースロー: ジョイ ントエンコーダエラー	ハードウェア障害	/	アフターサービ スへの連絡
Interfaceboard	インタフ ェースプ レート	Error throw: Joint absolute encoder error	エラースロー: ジョイ ント絶対エンコーダエ ラー	ハードウェア障害	/	アフターサービ スへの連絡
Interfaceboard	インタフ ェースプ レート	Error throw: Joint current detect error	エラースロー: 関節温 度検出エラー	ハードウェア障害	/	アフターサービ スへの連絡
Interfaceboard	インタフ ェースプ レート	Error throw: Joint encoder z-signal error	エラースロー: エンコ ーダ z 信号エラー	ハードウェア障害	/	アフターサービ スへの連絡
Interfaceboard	インタフ ェースプ レート	Error throw: Joint encoder calibration failed	エラースロー: ジョイ ントエンコーダの較正 に失敗しました	ハードウェア障害	/	アフターサービ スへの連絡
Interfaceboard	インタフ ェースプ レート	Error throw: Joint IMU sensor invalid	エラースロー:関節 IMU センサの故障	ハードウェア障害	/	アフターサービ スへの連絡
Interfaceboard	インタフ ェースプ レート	Error throw: Joint temperature sensor error	エラースロー:関節温 度センサエラー	ハードウェア障害	/	アフターサービ スへの連絡

Event Type	イベント タイプ	Message	イベント情報	ポップアップ窓の説明	発生する可能性 のある障害	解決策
Interfaceboard	インタフ ェースプ レート	Error throw: Joint canbus error	エラースロー: ジョイ ント CAN バスエラー	ハードウェア障害	/	アフターサービ スへの連絡
Interfaceboard	インタフ ェースプ レート	Error throw: Joint current error	エラースロー: ジョイ ント電流エラー	ハードウェア障害	/	アフターサービ スへの連絡
Interfaceboard	インタフ ェースプ レート	Error throw: Joint current position error	エラースロー: ジョイ ントの現在位置エラー	ハードウェア障害	/	アフターサービ スへの連絡
Interfaceboard	インタフ ェースプ レート	Error throw: Joint over speed	エラースロー: ジョイ ントスピードオーバー	ヒント情報	1	ログをコピー し、アフターサ ービスに連絡す る
Interfaceboard	インタフ ェースプ レート	Error throw: Joint over accelerate	エラースロー:関節加 速度オーバーラン	ヒント情報	1	ログをコピー し、アフターサ ービスに連絡す る
Interfaceboard	インタフ ェースプ レート	Error throw: Joint tracking accuracy error	エラースロー: ジョイ ントトラッキングエラ ーが大きすぎる	ヒント情報	1	ログをコピー し、アフターサ ービスに連絡す る
Interfaceboard	インタフ ェースプ レート	Error throw: Joint target position out of range	エラースロー: ジョイ ント目標位置超過	ヒント情報	/	ログをコピー し、アフターサ

エラー![ホーム] タブを使用して、ここに表示する文字列に 标题 を適用してください。|エラー![ホーム] タブを使用して、ここに表示する文字列に 副标题 を適用してくだ さい。 V4.5.11

Event Type	イベント タイプ	Message	イベント情報	ポップアップ窓の説明	発生する可能性 のある障害	解決策
						ービスに連絡す る
Interfaceboard	インタフ ェースプ レート	Error throw: Joint target speed out of range	エラースロー: ジョイ ント目標速度超過	ヒント情報	1	ログをコピー し、アフターサ ービスに連絡す る
Interfaceboard	インタフ ェースプ レート	Error throw: Robot type error	エラースロー: ロボッ トタイプエラー	ヒント情報	/	アフターサービ スへの連絡
Interfaceboard	インタフ ェースプ レート	Error throw: Acceleration sensor error	エラースロー:加速度 センサエラー	ハードウェア障害	/	アフターサービ スへの連絡
Interfaceboard	インタフ ェースプ レート	Error throw: Encoder line error	エラースロー: ジョイ ントエンコーダ線数エ ラー	ハードウェア障害	/	アフターサービ スへの連絡
Interfaceboard	インタフ ェースプ レート	Error throw: Enter force control error	エラースロー: ドラッ グティーチングモード に入る	ヒント情報	/	/
Interfaceboard	インタフ ェースプ レート	Error throw: Exit force control error	エラースロー: ドラッ グティーチングモード を終了する	ヒント情報	/	/
Interfaceboard	インタフ ェースプ レート	Error throw: Driver version error	エラースロー: ジョイ ントドライバのバージ ョンエラー	ハードウェア障害	1	アフターサービ スへの連絡

Event Type	イベント タイプ	Message	イベント情報	ポップアップ窓の説明	発生する可能性 のある障害	解決策
Interfaceboard	インタフ ェースプ レート	Error throw: Protection stop timeout	エラースロー: 保護停 止タイムアウト	ヒント情報	命令が応答し ない	アフターサービ スへの連絡
Interfaceboard	インタフ ェースプ レート	Error throw: Reduced mode timeout	エラースロー:縮小モ ードに入るタイムアウ ト	ヒント情報	命令が応答し ない	アフターサービ スへの連絡
Interfaceboard	インタフ ェースプ レート	Error throw: Unkown robot event from interfaceboard System abnormal	エラースロー:不明な エラー	ヒント情報	/	アフターサービ スへの連絡
Interfaceboard	インタフ ェースプ レート	Error throw: Mcu communication error	エラースロー: MCU 通 信エラー	ヒント情報	/	アフターサービ スへの連絡
Interfaceboard	インタフ ェースプ レート	Error throw: Tool rs485 communication error	エラースロー: ツール 側 RS 485 通信エラー	ハードウェア障害	/	アフターサービ スへの連絡
Robot Controller	コントロ ーラソフ トウェア	IK failure, Robot enters ambiguous space	エラースロー: 逆解に 失敗し、ロボットが特 異空間に入る	ヒント情報	/	再計画

遨博(北京)智能科技有限公司

地址 : 北京市门头沟区莲石湖西路98号石龙 阳光大厦5号楼3层(总部) 电话 : +86 010-88595859 / 60864660 网址:www.aubo-robotics.cn

遨博(江苏)机器人有限公司

地址: 江苏省常州市常州科教城中科创业中 心B座3层 电话: +86 0519-86339960 邮箱: info@aubo-robotics.cn

